Studying at the University of Verona
Study Plan
This information is intended exclusively for students already enrolled in this course.If you are a new student interested in enrolling, you can find information about the course of study on the course page:
Laurea magistrale a ciclo unico in Medicina e chirurgia - Enrollment from 2025/2026The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University.
Please select your Study Plan based on your enrollment year.
1° Year
Modules | Credits | TAF | SSD |
---|
2° Year activated in the A.Y. 2017/2018
Modules | Credits | TAF | SSD |
---|
3° Year activated in the A.Y. 2018/2019
Modules | Credits | TAF | SSD |
---|
4° Year activated in the A.Y. 2019/2020
Modules | Credits | TAF | SSD |
---|
5° Year activated in the A.Y. 2020/2021
Modules | Credits | TAF | SSD |
---|
6° Year activated in the A.Y. 2021/2022
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Legend | Type of training activity (TTA)
TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.
Genetics and Molecular Biology - GENETICA MOLECOLARE (2017/2018)
Teaching code
4S000893
Academic staff
Credits
3
Language
Italian
Scientific Disciplinary Sector (SSD)
BIO/13 - EXPERIMENTAL BIOLOGY
Period
Lezioni 1° semestre 2°- 6° anno dal Oct 2, 2017 al Dec 21, 2017.
Location
VERONA
Learning outcomes
The Course aims to provide the basic knowledge of human genetics in order to be able to understand the principles of transmission of normal and pathological hereditary tracts, as well as the mode of occurrence of hereditary biological variability.
At the end of the Course students should demonstrate to have acquired knowledge about DNA polymorphisms, population genetics and methods for investigation of human diseases. They also should demonstrate to have acquired basic knowledge on cancer genetics and to be able to derive the frequency of the disease gene/allele frequency in populations.
Program
DNA polymorphisms: RFLPs, VNTRs, minisatellites, microsatellites, SNPs, CNVs. Karyotype polymorphisms. Definition, analysis methods and their applications: individual identification, paternity testing, criminal investigations, mixed and complete chimerism following bone marrow transplantation, hydatidiforme mole. Examples of cases analysed in the Biology and Genetics Section.
Linkage analysis: use of DNA markers; linkage disequilibrium, informativeness of a family with a gene associated DNA marker; factors determining diagnostic accuracy in linkage analysis, usefulness of the flanking markers. Examples of investigations performed at the labs of the Biology and Genetics Section.
Molecular genetics in medicine.
Diagnosis of genetic diseases by DNA analysis: functional and positional cloning, identification of disease gene and pathological gene mutations, analysis of frequency and geographical distribution of mutations, direct and indirect methods for gene mutation analysis.
Population genetics.
Mendelian population and gene pool. Hardy-Weinberg law: definition, calculation of allele and genotype frequencies, equilibrium assessment, examples and problems. Assumption for H-W Equilibrium and disturbing factors: genetic drift, founder and bottleneck effect, geographic isolated, inbreeding, mutation, selection, migration, heterozygote advantage. Variability and human evolution.
Examples of the genetic disease study
Inherited disorders of hemoglobin: alpha and beta-thalassemia, sickle-cell disease, HPFH. Evolution of globin genes, globin gene clusters, orthologous and paralogous genes. Clinical terminology and main thalassemia mutations, Hemoglobin Lepore. Hemoglobinopathies and heterozygote advantage.
Cystic fibrosis (CF): clinical features, positional cloning and identification of CFTR gene, most frequent mutations, CF mutation classification, genotype-phenotype correlation. Complexity in Mendelian diseases: cystic fibrosis and related phenotypes, modifier genes.
Genetics of cancer. Tumors as multifactorial and somatic genetic diseases; clonal origin of cancer. Tumor genes (classification and characteristics) and cellular cycle: proto-oncogene (cellular oncogene, c-onc), tumor suppressor gene, mutator genes. Proto-oncogene products and their involvement in normal cellular function. Activation mechanisms of proto-oncogene and tumor suppressor gene; Knudson two hits model, loss of heterozygosity (LOH), genomic instability - microsatellite instability (MIN); mutator genes and examples of AD, AR genetic diseases associated with cancer. Sporadic and hereditary forms. Examples: CML-philadelphia chromosome, Burkitt lymphoma, retinoblastoma, colorectal cancer, familial adenomatous polyposis (FAP), HNPCC. Notes on miRNAs and their involvement in cancer.
Author | Title | Publishing house | Year | ISBN | Notes |
---|---|---|---|---|---|
Neri G. e Genuardi M. | Genetica Umana e Medica (Edizione 4) | EDRA LSWR - Masson | 2017 |
Examination Methods
The final examination consists of a written test, the same for the two modules (molecular and medical genetics), consisting of multiple choice questions, open questions and exercises. The written test, if passed with a score equal to or greater to 18/30, is followed by a unique oral test.
In order to pass the molecular and medical genetics part, students should demonstrate to have learned the knowledge of the topics in the programme, and apply the newly learned skills to distinguish the various types of inheritance, to assess genetic recurrence risks, and calculate gene frequencies in populations.
Objective of the written test: to evaluate the comprehension of the topics contained in the teaching programme as exercises and questions.
Objective of the oral test: to assess an advanced comprehension of the programme topics, and the ability to present the arguments in a critical and precise way, using an appropriate scientific language.