Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

Academic calendar

The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.

Academic calendar

Course calendar

The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..

Definition of lesson periods
Period From To
I sem. Oct 1, 2014 Jan 30, 2015
II sem. Mar 2, 2015 Jun 12, 2015
Exam sessions
Session From To
Sessione straordinaria appelli d'esame Feb 2, 2015 Feb 27, 2015
Sessione estiva appelli d'esame Jun 15, 2015 Jul 31, 2015
Sessione autunnale appelli d'esame Sep 1, 2015 Sep 30, 2015
Degree sessions
Session From To
Sessione autunnale appello di laurea 2014 Nov 26, 2014 Nov 26, 2014
Sessione invernale appello di laurea 2015 Mar 18, 2015 Mar 18, 2015
Sessione estiva appello di laurea 2015 Jul 14, 2015 Jul 14, 2015
Sessione autunnale appello di laurea 2015 Nov 25, 2015 Nov 25, 2015
Sessione invernale appello di laurea 2016 Mar 16, 2016 Mar 16, 2016
Holidays
Period From To
Vacanze di Natale Dec 22, 2014 Jan 6, 2015
Vacanze di Pasqua Apr 2, 2015 Apr 7, 2015
Ricorrenza del Santo Patrono May 21, 2015 May 21, 2015
Vacanze estive Aug 10, 2015 Aug 16, 2015

Exam calendar

Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.

Exam calendar

Should you have any doubts or questions, please check the Enrollment FAQs

Academic staff

B C D F G L M O P Q T U V

Belussi Alberto

symbol email alberto.belussi@univr.it symbol phone-number +39 045 802 7980

Bicego Manuele

symbol email manuele.bicego@univr.it symbol phone-number +39 045 802 7072

Buffelli Mario Rosario

symbol email mario.buffelli@univr.it symbol phone-number +39 0458027268

Capaldi Stefano

symbol email stefano.capaldi@univr.it symbol phone-number +39 045 802 7907

Cicalese Ferdinando

symbol email ferdinando.cicalese@univr.it symbol phone-number +39 045 802 7969

Combi Carlo

symbol email carlo.combi@univr.it symbol phone-number +39 045 802 7985

Daffara Claudia

symbol email claudia.daffara@univr.it symbol phone-number +39 045 802 7942

Delledonne Massimo

symbol email massimo.delledonne@univr.it symbol phone-number 045 802 7962; Lab: 045 802 7058

Dell'Orco Daniele

symbol email daniele.dellorco@univr.it symbol phone-number +39 045 802 7637

Dominici Paola

symbol email paola.dominici@univr.it symbol phone-number 045 802 7966; Lab: 045 802 7956-7086

D'Onofrio Mariapina

symbol email mariapina.donofrio@univr.it symbol phone-number 045 802 7801

Drago Nicola

symbol email nicola.drago@univr.it symbol phone-number 045 802 7081

Farinelli Alessandro

symbol email alessandro.farinelli@univr.it symbol phone-number +39 045 802 7842

Fiorini Paolo

symbol email paolo.fiorini@univr.it symbol phone-number 045 802 7963

Giachetti Andrea

symbol email andrea.giachetti@univr.it symbol phone-number +39 045 8027998

Giorgetti Alejandro

symbol email alejandro.giorgetti@univr.it symbol phone-number 045 802 7982

Gobbi Bruno

symbol email bruno.gobbi@univr.it

Gregorio Enrico

symbol email Enrico.Gregorio@univr.it symbol phone-number +39 045 802 7937

Lovato Pietro

symbol email pietro.lovato@univr.it symbol phone-number +39 045 802 7035

Manca Vincenzo

symbol email vincenzo.manca@univr.it symbol phone-number 3534161648

Masini Andrea

symbol email andrea.masini@univr.it symbol phone-number +39 045 802 7922

Menegaz Gloria

symbol email gloria.menegaz@univr.it symbol phone-number +39 045 802 7024

Oliboni Barbara

symbol email barbara.oliboni@univr.it symbol phone-number +39 045 802 7077

Piccinelli Fabio

symbol email fabio.piccinelli@univr.it symbol phone-number +39 045 802 7097

Posenato Roberto

symbol email roberto.posenato@univr.it

Quaglia Davide

symbol email davide.quaglia@univr.it symbol phone-number +39 045 802 7811

Trabetti Elisabetta

symbol email elisabetta.trabetti@univr.it symbol phone-number 045/8027209
UgoliniSimone

Ugolini Simone

symbol email simone.ugolini@univr.it

Villa Tiziano

symbol email tiziano.villa@univr.it symbol phone-number +39 045 802 7034

Study Plan

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University.
Please select your Study Plan based on your enrollment year.

2° Year  activated in the A.Y. 2015/2016

ModulesCreditsTAFSSD
12
C
BIO/10
6
C
BIO/18
12
B
INF/01
activated in the A.Y. 2015/2016
ModulesCreditsTAFSSD
12
C
BIO/10
6
C
BIO/18
12
B
INF/01

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




S Placements in companies, public or private institutions and professional associations

Teaching code

4S02717

Credits

12

Coordinator

Tiziano Villa

Language

Italian

Scientific Disciplinary Sector (SSD)

ING-INF/05 - INFORMATION PROCESSING SYSTEMS

The teaching is organized as follows:

Teoria

Credits

9

Period

I semestre

Academic staff

Tiziano Villa

Laboratorio

Credits

3

Period

II semestre

Academic staff

Nicola Drago

Learning outcomes

Module:
-------

The first part of the class describes how to implement an algorithm into a digital architecture. Some design alternatives are presented ranging from a pure software, running on a general purpose computer, to an ad-hoc hardware implementation. The goal is to understand the compilation steps transforming an high-level programming language into machine-level code.

The second part of the class describes the architecture of an operating system, with the objective to understand the management and synchronization of processes and resources of a general-purpose computing system.

Program

Module:
-------

Fundamentals: information coding, Boolean functions, arithmetic.

Digital design: combinational circuits, sequential circuits, special purpose architectures (control unit + data path), programmable units.

Computer architecture: basic principles, instruction set, processor, memory hierarchy, I/O organization.

Practical exercises: assembly programming of LC-3 architecture.


Evolution and role of the operating system. Architectural concepts. Organization and functionality of an operating system.

Process Management: Processes. Process status. Context switch. Process creation and termination. Thread. User-level threads and kernel-level threads. Process cooperation and communication: shared memory, messages. Direct and indirect communication.

Scheduling: CPU and I/O burst model. Long term, short term and medium term scheduling. Preemption. Scheduling criteria. Scheduling algorithm: FCFS, SJF, priority-based, RR, HRRN, multiple queues with and without feedback. Algorithm evaluation: deterministic and probabilistic models, simulation.

Process synchronization: data coherency, atomic operations. Critical sections. SW approaches for mutual exclusion: Peterson and Dekker's algorithms, baker's algorithm. HW for mutual exclusion: test and set, swap. Synchronization constructs: semaphores, mutex, monitor.

Deadlock: Deadlock conditions. Resource allocation graph. Deadlock prevention. Deadlock avoidance. Banker's algorithm. Deadlock detection e recovery.

Memory management: Main memory. Logical and physical addressing. Relocation, address binding. Swapping. Memory allocation. Internal and external fragmentation. Paging. HW for paging: TLB. Page table. Multi-level paging. Segmentation. Segment table. Segmentation with paging.

Virtual memory: Paging on demand. Page fault management. Page substitution algorithms: FIFO, optimal, LRU, LRU approximations. Page buffering. Frame allocation: local and global allocation. Thrashing. Working set model. Page fault frequency.

Secondary memory. Logical and physical structure of disks. Latency time. Disk scheduling algorithms: FCFS, SSTF, SCAN, C-SCAN, LOOK, C-LOOK. RAID.

File System: file, attributes and related operation. File types. Sequential and direct access. Directory structure. Access permissions and modes. Consistency semantics. File system structure. File system mounting. Allocation techniques: adjacent, linked, indexed. Free space management: bit vector, lists. Directory implementation: linear list, hash table.

I/O subsystem: I/O Hardware. I/O techniques: programmed I/O, interrupt, DMA. Device driver and application interface. I/O kernel services: scheduling, buffering, caching, spooling.

Bibliography

Reference texts
Activity Author Title Publishing house Year ISBN Notes
Teoria R.Katz, G.Borriello Contemporary logic design (Edizione 2) Pearson Education International 2005 0-13-127830-4
Teoria Y.N. Patt, S.J. Patel Introduction to Computing Systems (Edizione 2) McGrawHill 2004 978-0-07-246750-5
Teoria Franco Fummi, Mariagiovanna Sami, Cristina Silvano Progettazione Digitale (Edizione 2) McGraw-Hill 2007 8838663521
Teoria Abraham Silberschatz, Peter Baer Galvin, Greg Gagne Sistemi operativi. Concetti ed esempi. (Edizione 9) Pearson 2014 9788865183717

Examination Methods

Module:
-------

Written text for the theoretical part (3/4 of final grade).

Programming projects and written text for the laboratory (1/4 of final grade).

Students with disabilities or specific learning disorders (SLD), who intend to request the adaptation of the exam, must follow the instructions given HERE

Teaching materials e documents

Type D and Type F activities

Modules not yet included

Career prospects


Module/Programme news

News for students

There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details: only in this way will you be able to receive notification of all the notices from your teachers and your secretariat via email and also via the Univr app.

Tutoring faculty members


Graduation

For schedules, administrative requirements and notices on graduation sessions, please refer to the Graduation Sessions - Science and Engineering service.

Attendance modes and venues

As stated in the Teaching Regulations, attendance at the course of study is not mandatory.

Part-time enrolment is permitted. Find out more on the Part-time enrolment possibilities page.

The course's teaching activities take place in the Science and Engineering area, which consists of the buildings of Ca‘ Vignal 1, Ca’ Vignal 2, Ca' Vignal 3 and Piramide, located in the Borgo Roma campus. 
Lectures are held in the classrooms of Ca‘ Vignal 1, Ca’ Vignal 2 and Ca' Vignal 3, while practical exercises take place in the teaching laboratories dedicated to the various activities.

 


Career management


Student login and resources


Erasmus+ and other experiences abroad