Studying at the University of Verona
Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.
Study Plan
This information is intended exclusively for students already enrolled in this course.If you are a new student interested in enrolling, you can find information about the course of study on the course page:
Laurea magistrale in Molecular and Medical Biotechnology - Enrollment from 2025/2026The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University.
Please select your Study Plan based on your enrollment year.
1° Year
Modules | Credits | TAF | SSD |
---|
1 course among the following
1 course among the following
2 courses among the following
3 courses among the following
2° Year activated in the A.Y. 2024/2025
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
1 course among the following
1 course among the following
2 courses among the following
3 courses among the following
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
2 courses among the following ("CLINICAL PROTEOMICS" 1ST and2ND YEAR; the other courses 2nd year only)
Legend | Type of training activity (TTA)
TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.
Medical genetics and pharmacogenomics (2023/2024)
Teaching code
4S003672
Academic staff
Coordinator
Credits
6
Language
English
Scientific Disciplinary Sector (SSD)
MED/03 - MEDICAL GENETICS
Period
Semester 2 dal Mar 4, 2024 al Jun 14, 2024.
Courses Single
Authorized
Learning objectives
The course provides the principles of medical genetics and pharmacogenomics. It aims to show when and how the genetic factor, defined at different resolution levels (from chromosomes to single nucleotide) plays a role in the variability of Mendelian and complex diseases, and of the variability of drug-response. The course aims to provide students with the tools to be able to evaluate critically and independently the results of scientific research in the field of medical genetics and pharmacogenomics.
Prerequisites and basic notions
To successfully follow the course, basic knowledge of the fundamentals of biology and formal genetics is required.
Program
Human chomosomes, standard karyotype and numerical and structural chromosomal abnormalities. Chromosomal polymorphisms and CNV.
- Chromosomic syndromes and Genome disorders. Uniparental disomy . Uniparental diploidy
- Genetic counselling, genetic tests, prenatal diagnosis. - Parent-of-origin effects, imprinting and genomic imprinting disorders.
Diseases due to expansion of unstable repeat sequences (dynamic mutations). Unstable repeat expansion, premutation and full mutation, Sherman's paradox, anticipation.
-- Hereditary. Mendelian inheritance and atypical inheritance patterns: Mitocondrial inheritance
- Bases of human genetics. Human genome organization, gene order on human chromosomes. Structure of eukaryotic genes. Repetitive DNA. DNA polymorphisms: RFLP, SNP, VNTR, minisatellites, microsatellites. Genetic markers, physical and genetic maps. Linkage Disequilibrium.
- Pedigree construction and analysis.
- Gene and chromosomal mutations, mutation nomenclature. Mutagenesis and DNA repair. Molecular pathology of the gene: biological relevance and effect on the phenotype of mutations, methods for mutation classification as disease-causing. Gain and loss of function mutations, dominance and recessiveness. Genotype-phenotype correlation.
- Genetic variation in individuals and populations. Mutation and polymorphism. The Hardy-Weinberg law, allele and genotype frequency calculation. Inbreedeng and relatedness.
- Mendelian disease gene and mutation identification. Positional and functional cloning. Linkage analysis, human gene mapping, sequencing. Identification of disease causing mutations. Direct and indirect mutation analysis.
- Genetic testing. Diagnostic, presymptomatic, susceptibility, heterozygote identification, population genetic screening, neonatal screening.
- Modifier genes and complexity in single-gene disorders.
- The inheritance of multifactorial traits. Genetics of common disorders with complex inheritance, genetic and environmental factors, qualitative and quantitative traits, genetic predisposition to common diseases. General aspects od the identification of genetic factors in complex diseases. Segregation analysis: Mapping of complex traits, Familial and twin studies.
-Parametric and Non parametric Linkage. Linkage disequilibrium. Linkage and association analyses. Candidate gene studies, genome wide association studies (GWAS).
- Pharmacogenetics and precision medicine. Individual variation of drug response. Genes and polymorphisms of drug metabolism and mechanism of drug action. Molecular diagnostics of pharmacogenetic traits.
- Cancer genetics.
- Genome scan. Study design, quality control of data, imputation, risk assessment, linkage and association.
- Genome sequencing and Genomic, Exomic, and Transcriptomic analysis. Gene counting. Isoforms. Bioinformatics and Genomics.
Bibliography
Didactic methods
The methods adopted for teaching consist of lectures with interaction with students aimed at transmitting the knowledge required by the program on the relevant topics, with in-depth lessons aimed at achieving the objectives of the course.
Learning assessment procedures
The exam consists of an oral test based on all the course contents
Evaluation criteria
The task of the exam consists in verifying the comprehension of course contents and the ability to properly describe their arguments with appropriate scientific language.
Examination methods are the same for students who attended and for those who did not attend the course.
Exam language
Inglese. English.