Studying at the University of Verona
Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.
Academic calendar
The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.
Course calendar
The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..
Period | From | To |
---|---|---|
primo semestre (lauree) | Sep 28, 2020 | Dec 23, 2020 |
secondo semestre (lauree) | Feb 15, 2021 | Jun 1, 2021 |
Session | From | To |
---|---|---|
sessione invernale | Jan 11, 2021 | Feb 12, 2021 |
sessione estiva | Jun 7, 2021 | Jul 23, 2021 |
sessione autunnale | Aug 23, 2021 | Sep 17, 2021 |
Session | From | To |
---|---|---|
sessione autunnale (validità a.a. 2019/20) | Dec 9, 2020 | Dec 11, 2020 |
sessione invernale (validità a.a. 2019/20) | Apr 7, 2021 | Apr 9, 2021 |
sessione estiva (validità a.a. 2020/21) | Sep 6, 2021 | Sep 8, 2021 |
Period | From | To |
---|---|---|
Vacanze di Natale | Dec 24, 2020 | Jan 6, 2021 |
Vacanze di Pasqua | Apr 3, 2021 | Apr 6, 2021 |
Vacanze estive | Aug 9, 2021 | Aug 15, 2021 |
Exam calendar
Exam dates and rounds are managed by the relevant Economics Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.
Academic staff
Study Plan
The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University.
Please select your Study Plan based on your enrollment year.
1° Year
Modules | Credits | TAF | SSD |
---|
2° Year activated in the A.Y. 2021/2022
Modules | Credits | TAF | SSD |
---|
3° Year activated in the A.Y. 2022/2023
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Legend | Type of training activity (TTA)
TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.
Type D and Type F activities
years | Modules | TAF | Teacher |
---|---|---|---|
1° | Future matters | D |
Alessandro Bucciol
(Coordinator)
|
1° | Future matters | D |
Alessandro Bucciol
(Coordinator)
|
years | Modules | TAF | Teacher |
---|---|---|---|
1° | Design and Evaluation of Economic and Social Policies | D |
Federico Perali
(Coordinator)
|
1° | Public debate and scientific writing - 2020/2021 | D |
Martina Menon
(Coordinator)
|
1° | Wake up Italia - 2020/2021 | D |
Sergio Noto
(Coordinator)
|
years | Modules | TAF | Teacher | |
---|---|---|---|---|
1° | Ciclo di video conferenze: "L’economia del Covid, Verona e l’Italia. Una pandemia che viene da lontano?" - 2020/21 | D |
Sergio Noto
(Coordinator)
|
|
1° | Ciclo tematico di conferenze (on-line): “Come saremo? Ripensare il mondo dopo il 2020” - 2020/21 | D |
Federico Brunetti
(Coordinator)
|
|
1° | Marketing plan - 2020/21 | D |
Virginia Vannucci
(Coordinator)
|
|
1° 2° 3° | Data Analysis Laboratory with R (Verona) | D |
Marco Minozzo
(Coordinator)
|
|
1° 2° 3° | Data Visualization Laboratory | D |
Marco Minozzo
(Coordinator)
|
|
1° 2° 3° | Python Laboratory | D |
Marco Minozzo
(Coordinator)
|
|
1° 2° 3° | Data Science Laboratory with SAP | D |
Marco Minozzo
(Coordinator)
|
|
1° 2° 3° | Advanced Excel Laboratory (Verona) | D |
Marco Minozzo
(Coordinator)
|
|
1° 2° 3° | Excel Laboratory (Verona) | D |
Marco Minozzo
(Coordinator)
|
|
1° 2° 3° | Programming in Matlab | D |
Marco Minozzo
(Coordinator)
|
|
1° 2° 3° | Programming in SAS | D |
Marco Minozzo
(Coordinator)
|
Python Laboratory (2020/2021)
Teaching code
4S009612
Teacher
Coordinator
Credits
3
Also offered in courses:
- Python Laboratory of the course Bachelors' degree in Business Administration and Management
- Python Laboratory of the course Master’s degree in Banking and Finance
- Python Laboratory of the course Master’s degree in Economics and Data Analysis
- Python Laboratory of the course Master’s degree in Business Administration and Corporate Law
- Python Laboratory of the course Master’s degree in Marketing and Corporate Communication
- Python Laboratory of the course Master’s degree in Economics
- Python Laboratory of the course Bachelor's degree in Business Administration (Verona)
- Python Laboratory of the course Bachelor's degree in Economics and Business (Verona)
- Python Laboratory of the course Bachelor's degree in Economics and Business (Vicenza)
- Python Laboratory of the course Bachelor's degree in Business Administration (Vicenza)
- Python Laboratory of the course Master's degree in International Economics and Business Management
- Python Laboratory of the course Master’s degree in International Economics and Business
- Python Laboratory of the course Master’s degree in Management and business strategy
- Python Laboratory of the course Bachelor's degree in Economics, Firms and International Markets
- Python Laboratory of the course Bachelor's degree in Business Innovation and Economics
Language
Italian
Scientific Disciplinary Sector (SSD)
NN - -
Period
Not yet assigned
Learning outcomes
The course "Python Laboratory" is an optional "type f" activity, which allows to students to obtain 3 CFU, once a final examination is passed. In particular:
- The course is open to all CdL and CdLM students of the School of Economics and Management.
- Due to the COVID-19 emergency, this year lessons will be delivered online through Zoom meetings. The course has, approximately, 50 places.
- The course will take place in the first semester; there will be just one course.
- Requests for participation will be considered following the registration order considering that priority will be given to CdLM students, in particular to the students of the Master’s degree in Economics, of the Master’s degree in Economics and Data Analysis, and of the Master’s degree in Banking and Finance. Students are required to participate to the first lesson, or to send an email to the tutor to communicate their absence.
- Participation to the course does not require any particular background knowledge of the software Python.
- The frequency to the classes is compulsory. Students are required to attend at least 2/3 of the exercise lessons and tutorial activities in order to be admitted to the final evaluation.
The course consists of 18 hours of exercise lessons and tutorial activities (plus 2 hours of final examination).
The calendar of the course will be available as soon as possible.
Tutor: dott. Enrico De Vecchi
Registrations are open from the 13th of October 2020 to the 18th of October 2020.
Please, register through the elearning platform (Moodle). Students without a university IT account can ask to be registered by writing an email to the coordinator of the course. All other students must use the procedure on Moodle.
Program
Python is a widely used high-level programming language for general-purpose programming. It is an interpreted language, it has a design philosophy that emphasizes code readability and it has a syntax that allows programmers to express concepts in fewer lines of code than might be used in other languages, allowing new users to learn it in a few days. Python features a dynamic type system and automatic memory management and supports multiple programming paradigms, including object-oriented, imperative, functional programming, and procedural styles. It has a large and comprehensive standard library and it can easily be integrated with other programming languages, in particular with R. Python interpreters are available for many operating systems, allowing Python code to run on a wide variety of systems.
Python has gained wide popularity mainly for its use in the management and analysis of large data sets (data science). Today, R and Python are the two most widely used programming languages among data scientists. Both of them have rapidly advanced over the past few years. For these languages there exist many libraries for collecting, handling, visualizing and analyzing large data volumes and for implementing advanced machine learning models. Python is used in many organizations like NASA, Yahoo and Google. Python is open source and free software and has a community-based development model. Other information can be found at https://www.python.it/ and https://www.python.org/
The program of the course will start with an introduction to the software Python and its main functions. Then, some of the topics encountered in mathematical and statistic courses will be considered, as for example, matrix algebra, optimization and interpolation. Arguments will be presented mainly through examples. The course aims at improving the computational and programming skills of the students and at providing instruments that might be useful for the subsequent thesis work. The activity will allow students to improve the knowledge of a programming language that is highly requested in some sectors of the job market.
Author | Title | Publishing house | Year | ISBN | Notes |
---|---|---|---|---|---|
Joel Grus | Data Science con Python: dai fondamenti al Machine Learning (Edizione 1) | Egea | 2020 | 9788823822948 | |
Dmitry Zinoviev | Data Science con Python: dalle stringhe al machine learning, le tecniche essenziali per lavorare sui dati (Edizione 1) | APOGEO | 2017 | 9788850334148 | |
Joel Grus | Data Science from Scratch: First Principles with Python (Edizione 1) | O'Reilly Media, Inc. | 2015 | 9781491901410 | |
Sarah Guido, Andreas C. Müller | Introduction to Machine Learning with Python (Edizione 1) | O'Reilly Media, Inc. | 2016 | 9781449369880 | |
Tony Gaddis | Introduzione a Python (Edizione 1) | Pearson Italia, Milano-Torino | 2016 | 9788891900999 | |
Paul Deitel, Harvey Deitel | Introduzione a Python: per l'informatica e la data science (Edizione 1) | Pearson Italia | 2021 | 9788891915924 | |
Samir Madhavan | Mastering Python for Data Science (Edizione 1) | Packt Publishing | 2015 | 9781784390150 | |
Ahmed Sherif | Practical Business Intelligence (Edizione 1) | Packt Publishing | 2016 | 9781785885433 | |
Toby Segaran | Programming Collective Intelligence (Edizione 1) | O'Reilly Media, Inc. | 2007 | 9780596529321 | |
Jake VanderPlas | Python Data Science Handbook: Essential Tools for Working with Data (Edizione 1) | O'Reilly Media, Inc. | 2016 | 9781491912126 | |
William Wesley McKinney | Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython (Edizione 2) | O'Reilly Media, Inc. | 2017 | 9781491957653 | |
Vahid Mirjalili, Sebastian Raschka | Python Machine Learning (Edizione 2) | Packt Publishing | 2017 | 9781787125933 | |
Chris Albon | Python Machine Learning Cookbook (Edizione 1) | O'Reilly Media, Inc. | 2018 | 9781491989371 | |
Allen B. Downey | Think Stats: Exploratory Data Analysis (Edizione 2) | O'Reilly Media, Inc. | 2014 | 9781491907344 | |
Richard Lawson | Web Scraping with Python (Edizione 1) | Packt Publishing | 2015 | 9781782164364 |
Examination Methods
Students are required to attend at least 2/3 of the exercise lessons/tutorial activity in order to be admitted to the final evaluation. The final examination, which will take place online through a Zoom meeting, will consist in a written exam, followed by an oral examination, if necessary, on the use of the software Python. There will be just one date for the final examination.
Career prospects
Module/Programme news
News for students
There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details: only in this way will you be able to receive notification of all the notices from your teachers and your secretariat via email and also via the Univr app.
Graduation
Student mentoring
Internships
Gestione carriere
Linguistic training CLA
Student login and resources
Modalità di frequenza, erogazione della didattica e sedi
Le lezioni di tutti gli insegnamenti del corso di studio, così come le relative prove d’esame, si svolgono in presenza.
Peraltro, come ulteriore servizio agli studenti, è altresì previsto che tali lezioni siano registrate e che le registrazioni vengano messe a disposizione sui relativi moodle degli insegnamenti, salvo diversa comunicazione del singolo docente.
La frequenza non è obbligatoria.
Maggiori dettagli in merito all'obbligo di frequenza vengono riportati nel Regolamento del corso di studio disponibile alla voce Regolamenti nel menu Il Corso. Anche se il regolamento non prevede un obbligo specifico, verifica le indicazioni previste dal singolo docente per ciascun insegnamento o per eventuali laboratori e/o tirocinio.
È consentita l'iscrizione a tempo parziale. Per saperne di più consulta la pagina Possibilità di iscrizione Part time.
Le sedi di svolgimento delle lezioni e degli esami sono le seguenti