Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

Study Plan

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University.
Please select your Study Plan based on your enrollment year.

1° Year

ModulesCreditsTAFSSD
9
B
ING-INF/04
Compulsory activities for Embedded & Iot Systems
Compulsory activities for Smart Systems & Data Analytics
6
B/C
INF/01 ,ING-INF/06
6
B/C
ING-INF/05
Compulsory activities for Robotics Systems
6
B/C
INF/01
6
B/C
ING-INF/05

2° Year  activated in the A.Y. 2023/2024

ModulesCreditsTAFSSD
Compulsory activities for Embedded & Iot Systems
Compulsory activities for Robotics Systems
Compulsory activities for Smart Systems & Data Analytics
6
B/C
ING-INF/05
ModulesCreditsTAFSSD
9
B
ING-INF/04
Compulsory activities for Embedded & Iot Systems
Compulsory activities for Smart Systems & Data Analytics
6
B/C
INF/01 ,ING-INF/06
6
B/C
ING-INF/05
Compulsory activities for Robotics Systems
6
B/C
INF/01
6
B/C
ING-INF/05
activated in the A.Y. 2023/2024
ModulesCreditsTAFSSD
Compulsory activities for Embedded & Iot Systems
Compulsory activities for Robotics Systems
Compulsory activities for Smart Systems & Data Analytics
6
B/C
ING-INF/05
Modules Credits TAF SSD
Between the years: 1°- 2°
Between the years: 1°- 2°
Between the years: 1°- 2°
Further activities. International students (ie students who do not have an Italian bachelor’s degree) must compulsorily gain 3 credits of Italian language skills
3
F
-

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




S Placements in companies, public or private institutions and professional associations

Teaching code

4S009002

Coordinator

Tiziano Villa

Credits

9

Language

English en

Scientific Disciplinary Sector (SSD)

ING-INF/05 - INFORMATION PROCESSING SYSTEMS

Period

Semester 1 dal Oct 3, 2022 al Jan 27, 2023.

Learning objectives

The objective of the class is to describe formal methods to specify, analyze and synthesize discrete-event systems. Such systems encompass discrete heterogeneous and concurrent components at different levels of abstraction, and may be subject to real-time constraints and interact with continuous environments both natural and artificial. At the end the student will be able to demonstrate basic expertise about formalisms and algorithms to specify, analyze and synthesize discrete-event systems according to the paradigm of model-based design. This expertise will enable the student to: i) represent discrete-event systems by means of languages, finite-state automata and machines, Petri nets, hybrid automata; ii) analyze their behaviour by formal methods (structural and behavioural, exact and approximate); iii) synthesize supervisory controllers of plants described by finite automata with uncontrollable and unobservable events; iv) analyze the behaviour of simple hybrid systems with continuous and discrete dynamics. At the end of the class the student will be able to: i) evaluate autonomously advantages and disadvantages of different choices of specification formalisms, and of algorithms for the analysis and synthesis of discrete-event systems; ii) work together with application-domain specialists to choose the formal model suitable for the specification, analysis and control of a given system; iii) carry on independent study of formal methods for discrete-event systems both for industrial applications and scientific advancement.

Prerequisites and basic notions

None.

Program

Introduction to systems theory: linear and non-linear systems,
combinational and reactive systems, causal and non-causal systems.
Discrete-event systems and state machines (finite and infinite).
Deterministic and non-deterministic finite state machines.
Composition of finite state machines.
Minimization, determinization. equivalente and containment checking of
finite state machines.
Simulation and bisimulation of finite state machines.
Finite-state controller synthesis with respect to safety and progress properties.

Models of Petri nets.
Reachability analysis of Petri nets: reachability and coverability graphs
and trees, state equations, incidence matrices.
Srtructural and behavioral properties of Petri nets.
Expressiveness of classes of Petri nets.

Supervisory control for regular automata and languages.
Existence and construction of a supervisor under partial controllability.
Existence and construction of a supervisor under partial observability.
Existence and construction of a non-blocking supervisor.
Over-approximating and under-approximatin solutions of the supervisor control prolem.

Hybrid automata: specification and behavior.
The reachibility problem for timed automata.

Bibliography

Visualizza la bibliografia con Leganto, strumento che il Sistema Bibliotecario mette a disposizione per recuperare i testi in programma d'esame in modo semplice e innovativo.

Didactic methods

Classroom lectures.

Learning assessment procedures

The exam is a written test with theoretical questions and exercises.

Students with disabilities or specific learning disorders (SLD), who intend to request the adaptation of the exam, must follow the instructions given HERE

Evaluation criteria

Understanding of formal models and their mathematical properties to specify, analyze and control discrete event and hybrid systems.

Criteria for the composition of the final grade

The exam is passed with a score higher or equal to 18/30.

Exam language

English

Teaching materials e documents