Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

Study Plan

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University.
Please select your Study Plan based on your enrollment year.

1° Year

ModulesCreditsTAFSSD
9
B
ING-INF/04
Compulsory activities for Embedded & Iot Systems
Compulsory activities for Smart Systems & Data Analytics
6
B/C
INF/01 ,ING-INF/06
6
B/C
ING-INF/05
Compulsory activities for Robotics Systems
6
B/C
INF/01
6
B/C
ING-INF/05

2° Year  activated in the A.Y. 2023/2024

ModulesCreditsTAFSSD
Compulsory activities for Embedded & Iot Systems
Compulsory activities for Robotics Systems
Compulsory activities for Smart Systems & Data Analytics
6
B/C
ING-INF/05
ModulesCreditsTAFSSD
9
B
ING-INF/04
Compulsory activities for Embedded & Iot Systems
Compulsory activities for Smart Systems & Data Analytics
6
B/C
INF/01 ,ING-INF/06
6
B/C
ING-INF/05
Compulsory activities for Robotics Systems
6
B/C
INF/01
6
B/C
ING-INF/05
activated in the A.Y. 2023/2024
ModulesCreditsTAFSSD
Compulsory activities for Embedded & Iot Systems
Compulsory activities for Robotics Systems
Compulsory activities for Smart Systems & Data Analytics
6
B/C
ING-INF/05
Modules Credits TAF SSD
Between the years: 1°- 2°
Between the years: 1°- 2°
Between the years: 1°- 2°
Further activities. International students (ie students who do not have an Italian bachelor’s degree) must compulsorily gain 3 credits of Italian language skills
3
F
-

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




S Placements in companies, public or private institutions and professional associations

Teaching code

4S009017

Coordinator

Franco Fummi

Credits

6

Language

English en

Scientific Disciplinary Sector (SSD)

INF/01 - INFORMATICS

Period

Semester 1 dal Oct 3, 2022 al Jan 27, 2023.

Learning objectives

The course aims to train students in the field of algorithmic techniques, languages and automatic tools that underpin the verification and testing methodologies of complex digital and analog systems. In particular, the main objective of the course is to explain how it is possible to represent complex systems through virtual platforms in relation to their physical realization and to guarantee the functional safety and certification process of the devices that compose them. Upon completion of the course, the students must demonstrate that they have acquired the fundamental knowledge to understand the methodologies and tools necessary to verify and test complex analog / digital devices, to guarantee their functional safety, and to certify them. This knowledge will allow the students to: represent analog / digital systems in the form of virtual platforms; define verification methods based on dynamic and semi-formal techniques; develop approaches for testing and fault tolerance; use, integrate, and develop automatic tools for the modelling, verification and testing of analog / digital systems; activate certification processes. At the end of the course the students will have acquired the ability to: (i) carry out a group or personal laboratory project and present the results by motivating the choices with language appropriateness; (ii) continue autonomously the study and research in the field of verification, testing and certification of complex analog / digital systems by addressing advanced issues both in the industrial and scientific fields.

Prerequisites and basic notions

To better understand the topics covered in the course it is necessary to have knowledge in the field of HW / SW systems design

Program

A. Systems modeling and veriifcation
- SystemVerilog
- ABV introduction
- ABV - specification languages
- ABV - assertion automatic generation
- ABV - assertion qualification: coverage
- ABV - assertion qualification: vacuity
- ABV - assertion qualification: overspecification
B. Systems testing and certiifcation
- Faults-defects-errors definition
- Digital faults modeling
- Analog faults modeling
- verilog-AMS
- Systemc-AMS
- Gate-level simulation
- Fault simulation
- Combinational ATPG
- Sequantial ATPG
- Design for testability
- Self-testing circuits
- Fault tollerance
- Functional safety
- Certification for safety

Bibliography

Visualizza la bibliografia con Leganto, strumento che il Sistema Bibliotecario mette a disposizione per recuperare i testi in programma d'esame in modo semplice e innovativo.

Didactic methods

The course is organized in lectures, exercises and self-assessment activities through the use of online questionnaires. There will also be practical computer exercises.
Recordings of all lessons are available on the Moodle pages of the A.Y.21/22.

Learning assessment procedures

The final exam consists of two parts:
- a written test containing questions and exercises;
- a report describing the application to a case study of skills acquired in the laboratory exercises. Alternatively, to such a report, it is possible to carry out a project connected with the thesis.

In the event of restrictions related to COVID, the examination procedure could be changed in agreement with those who attend the course.

Students with disabilities or specific learning disorders (SLD), who intend to request the adaptation of the exam, must follow the instructions given HERE

Evaluation criteria

To pass the exam, students must demonstrate that they:
- understand the principles related to the verification and testing of a system;
- are able to present their arguments in a precise and organic way without digressions;
- know how to apply the knowledge acquired to solve application problems presented in the form of exercises, questions and projects.

Criteria for the composition of the final grade

The final grade is given by the weighted sum of the theory grade and the laboratory report.

Exam language

English