Studiare

In questa sezione è possibile reperire le informazioni riguardanti l'organizzazione pratica del corso, lo svolgimento delle attività didattiche, le opportunità formative e i contatti utili durante tutto il percorso di studi, fino al conseguimento del titolo finale.

Queste informazioni sono destinate esclusivamente agli studenti e alle studentesse già iscritti a questo corso.
Se sei un nuovo studente interessato all'immatricolazione, trovi le informazioni sul percorso di studi alla pagina del corso:

Laurea magistrale in Mathematics - Immatricolazione dal 2025/2026

Il piano didattico è l'elenco degli insegnamenti e delle altre attività formative che devono essere sostenute nel corso della propria carriera universitaria.
Selezionare il piano didattico in base all'anno accademico di iscrizione.

CURRICULUM TIPO:

2° Anno   Attivato nell'A.A. 2019/2020

InsegnamentiCreditiTAFSSD
6
B
MAT/05
Final exam
32
E
-
Attivato nell'A.A. 2019/2020
InsegnamentiCreditiTAFSSD
6
B
MAT/05
Final exam
32
E
-
Insegnamenti Crediti TAF SSD
Tra gli anni: 1°- 2°
To be chosen between
Tra gli anni: 1°- 2°
Tra gli anni: 1°- 2°
Other activities
4
F
-

Legenda | Tipo Attività Formativa (TAF)

TAF (Tipologia Attività Formativa) Tutti gli insegnamenti e le attività sono classificate in diversi tipi di attività formativa, indicati da una lettera.




S Stage e tirocini presso imprese, enti pubblici o privati, ordini professionali

Codice insegnamento

4S001439

Coordinatore

Lidia Angeleri

Crediti

6

Lingua di erogazione

Inglese en

Settore Scientifico Disciplinare (SSD)

MAT/02 - ALGEBRA

Periodo

I semestre dal 1 ott 2018 al 31 gen 2019.

Obiettivi formativi

Questo corso seminariale è dedicato all'approfondimento di alcuni temi di algebra omologica e teoria delle rappresentazioni. Prerequisito: Representation Theory. Al termine dell'insegnamento lo studente dovrà essere in grado di produrre argomentazioni e dimostrazioni rigorose su questi temi e di leggere articoli e testi (anche avanzati) relativi all'algebra omologica.

Programma

Il corso è dedicato a due strumenti fondamentali dell'algebra omologica: purità e localizzazione. Ci soffermeremo soprattutto sul loro uso nella ricerca attuale in teoria delle rappresentazioni di algebre e in algebra omologica. La prima parte del corso consiste in lezioni introduttive tenure da L. Angeleri, R. Laking, T. Nakamura, la seconda parte sarà dedicata ad argomenti specifici presentati dai partecipanti.

Prerequisiti: nozioni di base su moduli su anelli commutativi e algebre di dimensione finita.

Il corso inizia il 6 novembre, per informazioni più dettagliate si veda http://profs.sci.univr.it/~angeleri/Homological%20methods%20in%20representation%20theory.html

Modalità d'esame

L'esame ha lo scopo di verificare la piena maturità circa le tecniche dimostrative e la capacità di leggere, comprendere e presentare argomenti avanzati di algebra omologica. Lo studente partecipa attivamente al corso e presenta un argomento concordato in un seminario.

Le/gli studentesse/studenti con disabilità o disturbi specifici di apprendimento (DSA), che intendano richiedere l'adattamento della prova d'esame, devono seguire le indicazioni riportate QUI