Studiare

In questa sezione è possibile reperire le informazioni riguardanti l'organizzazione pratica del corso, lo svolgimento delle attività didattiche, le opportunità formative e i contatti utili durante tutto il percorso di studi, fino al conseguimento del titolo finale.

A.A. 2009/2010

Calendario accademico

Il calendario accademico riporta le scadenze, gli adempimenti e i periodi rilevanti per la componente studentesca, personale docente e personale dell'Università. Sono inoltre indicate le festività e le chiusure ufficiali dell'Ateneo.
L’anno accademico inizia il 1° ottobre e termina il 30 settembre dell'anno successivo.

Calendario accademico

Calendario didattico

Il calendario didattico indica i periodi di svolgimento delle attività formative, di sessioni d'esami, di laurea e di chiusura per le festività.

Definizione dei periodi di lezione
Periodo Dal Al
I semestre 1-ott-2009 31-gen-2010
II semestre 1-mar-2010 15-giu-2010
Sessioni degli esami
Sessione Dal Al
Sessione straordinaria 1-feb-2010 28-feb-2010
Sessione estiva 16-giu-2010 31-lug-2010
Sessione autunnale 1-set-2010 30-set-2010
Sessioni di lauree
Sessione Dal Al
Sessione autunnale 29-set-2009 29-set-2009
Sessione straordinaria 10-dic-2009 10-dic-2009
Sessione invernale 17-mar-2010 17-mar-2010
Sessione estiva 19-lug-2010 19-lug-2010
Vacanze
Periodo Dal Al
Festa di Ognissanti 1-nov-2009 1-nov-2009
Festa dell'Immacolata Concezione 8-dic-2009 8-dic-2009
Vacanze Natalizie 21-dic-2009 6-gen-2010
Vacanze Pasquali 2-apr-2010 6-apr-2010
Festa della Liberazione 25-apr-2010 25-apr-2010
Festa del Lavoro 1-mag-2010 1-mag-2010
Festa del Santo Patrono 21-mag-2010 21-mag-2010
Festa della Repubblica 2-giu-2010 2-giu-2010
Vacanze Estive 9-ago-2010 15-ago-2010

Calendario esami

Gli appelli d'esame sono gestiti dalla Unità Operativa Didattica e Studenti Scienze e Ingegneria.
Per consultazione e iscrizione agli appelli d'esame visita il sistema ESSE3.
Per problemi inerenti allo smarrimento della password di accesso ai servizi on-line si prega di rivolgersi al supporto informatico della Scuola o al servizio recupero credenziali

Calendario esami

Per dubbi o domande leggi le risposte alle domande più frequenti F.A.Q. Iscrizione Esami

Docenti

B C F G M P S T V

Belussi Alberto

alberto.belussi@univr.it +39 045 802 7980

Bombieri Nicola

nicola.bombieri@univr.it +39 045 802 7094

Bos Leonard Peter

leonardpeter.bos@univr.it +39 045 802 7987

Carra Damiano

damiano.carra@univr.it +39 045 802 7059

Fontana Federico

federico.fontana@univr.it +39 045 802 7032

Fummi Franco

franco.fummi@univr.it 045 802 7994

Fusiello Andrea

nome.cognome[at]uniud.it

Giacobazzi Roberto

roberto.giacobazzi@univr.it +39 045 802 7995

Gregorio Enrico

Enrico.Gregorio@univr.it 045 802 7937

Mariotto Gino

gino.mariotto@univr.it +39 045 8027031

Masini Andrea

andrea.masini@univr.it 045 802 7922

Mastrogiacomo Elisa

Menegaz Gloria

gloria.menegaz@univr.it +39 045 802 7024

Merro Massimo

massimo.merro@univr.it 045 802 7992

Monti Francesca

francesca.monti@univr.it 045 802 7910

Pica Angelo

angelo.pica@univr.it

Pravadelli Graziano

graziano.pravadelli@univr.it +39 045 802 7081

Segala Roberto

roberto.segala@univr.it 045 802 7997

Spoto Nicola Fausto

fausto.spoto@univr.it +39 045 8027940

Todorov Velitchko

velitchko.todorov@univr.it

Vigano' Luca

luca.vigano@univr.it

Piano Didattico

Il piano didattico è l'elenco degli insegnamenti e delle altre attività formative che devono essere sostenute nel corso della propria carriera universitaria.
Selezionare il piano didattico in base all'anno accademico di iscrizione.

CURRICULUM TIPO:
InsegnamentiCreditiTAFSSD
12
B
(INF/01)
6
B
(ING-INF/05)
12
B
(ING-INF/05)
6
C
(MAT/08)

1° Anno

InsegnamentiCreditiTAFSSD
6
A
(MAT/02)
6
A
(FIS/01)
12
A
(INF/01)
6
C
(MAT/02)

2° Anno

InsegnamentiCreditiTAFSSD
12
B
(INF/01)
6
B
(ING-INF/05)
12
B
(ING-INF/05)
6
C
(MAT/08)

Legenda | Tipo Attività Formativa (TAF)

TAF (Tipologia Attività Formativa) Tutti gli insegnamenti e le attività sono classificate in diversi tipi di attività formativa, indicati da una lettera.




SStage e tirocini presso imprese, enti pubblici o privati, ordini professionali

Codice insegnamento

4S00030

Docente

Coordinatore

Velitchko Todorov

Crediti

6

Offerto anche nei corsi

Settore Scientifico Disciplinare (SSD)

MAT/05 - ANALISI MATEMATICA

Lingua di erogazione

Italiano

Periodo

I semestre dal 1-ott-2009 al 31-gen-2010.

Obiettivi formativi

Nel corso vengono introdotti i concetti e le tecniche del calcolo differenziale ed integrale, enfatizzandone gli aspetti metodologico-applicativi rispetto agli elementi logico-formali, con l'obiettivo di fornire gli strumenti di base per affrontare le problematiche scientifiche formalizzabili nel linguaggio della matematica del continuo.

Proprietà dei numeri reali. Successioni numeriche. Limiti di successioni e di funzioni. Funzioni continue. Calcolo differenziale per funzioni di una variabile. Serie numeriche. Calcolo integrale per funzioni di una variabile reale.

Programma

(i) Prerequisiti. Elementi di geometria analitica (equazioni di retta, parabola, circonferenza, ellisse, iperbole). Disequazioni di 2° grado. Regola di Ruffini. Binomio di Newton. Funzioni trigonometriche, esponenziale, logaritmo. Numeri naturali, principio di induzione. Numeri interi, razionali. Il sistema dei numeri reali: assioma di Dedekind, principio di Archimede, estremo superiore ed inferiore. Valore assoluto, disuguaglianza triangolare.

(ii) Successioni e serie numeriche. Limite di una successione. Convergenza delle successioni monotone e limitate. Successioni definite per ricorrenza. Il numero e . Teorema della permanenza del segno, teorema dei due Carabinieri. Operazioni con i limiti, forme indeterminate. La funzione esponenziale, logaritmo. Funzioni trigonometriche, coordinate polari, formule di Eulero. Serie numeriche. Convergenza della serie geometrica. Criteri di convergenza per serie a termini positivi: condizioni necessarie, criterio del confronto, del confronto asintotico, di condensazione, del rapporto, della radice. Criterio di convergenza assoluta. Criterio di convergenza di Leibnitz. Convergenza delle serie di potenze.

(iii) Continuità delle funzioni di una variabile. Sottoinsiemi di R: intervalli aperti, chiusi. Punti di accumulazione. Limite di funzioni reali. Limiti notevoli. Nozione di o ("o" piccolo). Funzioni continue. Funzioni continue su un intervallo: teorema degli zeri, teorema di Bolzano-Weierstrass. Conseguenze del teorema degli zeri: teorema dei valori intermedi (l'immagine continua di un intervallo è un intervallo), le funzioni continue invertibili sono monotone, continuità della funzione inversa.

(iv) Calcolo differenziale per funzioni di una variabile. Derivata di una funzione in un punto, significato geometrico, fisico. Continuità di una funzione derivabile. Derivate successive. Derivate delle funzioni elementari. Principali regole di derivazione. Tassi di crescita relativi e problemi applicati. Principio di Fermat. Teorema di Rolle. Teorema di Lagrange (del valor medio) e prime conseguenze. Problemi applicati di massimo e minimo. Regola di de l'Hôpital e applicazioni. Formula di Taylor, resto in forma di Peano e di Lagrange. Sviluppo di Taylor delle funzioni elementari, applicazioni al calcolo dei limiti e allo studio qualitativo del grafico di una funzione. Serie di Taylor, funzioni analitiche. Teorema di derivazione (e integrazione) termine a termine per serie di potenze.

(v) Calcolo integrale per funzioni di una variabile. Il problema inverso della derivazione, integrale indefinito. Il problema delle aree, integrale definito: definizione e proprietà dell'integrale di Riemann. Integrabilità delle funzioni continue. Teorema della media integrale. Teorema fondamentale del calcolo integrale. Metodi di integrazione: per sostituzione, per parti. Integrazione delle funzioni elementari. Applicazioni al calcolo di lunghezze, aree, volumi. Convergenza degli integrali impropri: criterio del confronto, criterio di integrabilità assoluta. Criterio integrale di convergenza per una serie numerica a termini positivi.

Bibliografia

Testi di riferimento
Autore Titolo Casa editrice Anno ISBN Note
Adams, R. Calcolo differenziale. [volume 1] Funzioni di una variabile reale (Edizione 3) Ambrosiana 2003 884081261X

Modalità d'esame

Modalita d'esame:
L'esame finale consiste in una prova scritta comprendente una serie di esercizi da risolvere, seguita, in caso di esito positivo, da una prova orale vertente sul programma svolto.

E' tuttavia possibile registrare direttamente quale voto d'esame l'inf tra la votazione riportata nella prova scritta e 25/30.

Materiale Didattico

Tipologia di Attività formativa D e F

Insegnamenti non ancora inseriti

Prospettive


Avvisi degli insegnamenti e del corso di studio

Per la comunità studentesca

Se sei già iscritta/o a un corso di studio, puoi consultare tutti gli avvisi relativi al tuo corso di studi nella tua area riservata MyUnivr.
In questo portale potrai visualizzare informazioni, risorse e servizi utili che riguardano la tua carriera universitaria (libretto online, gestione della carriera Esse3, corsi e-learning, email istituzionale, modulistica di segreteria, procedure amministrative, ecc.).
Entra in MyUnivr con le tue credenziali GIA.

Prova Finale

Per gli scadenziari, gli adempimenti amministrativi e gli avvisi sulle sessioni di laurea, si rimanda al servizio Sessioni di laurea - Scienze e Ingegneria.

Per essere ammessi alla prova finale occorre avere conseguito tutti i crediti nelle attività formative previste dal piano degli studi. Alla prova finale (esame di laurea) sono riservati 6 CFU. La Laurea in Informatica viene conseguita dalla/o studentessa/studente superando con esito positivo l'esame di laurea e completando in questo modo i 180 CFU stabiliti dal piano di studi. L'esame di laurea consiste in un colloquio che può essere basato su al più due delle seguenti opzioni: - breve elaborato scritto, anche in lingua inglese, su argomento assegnato; - esame orale, anche in lingua inglese, su argomento assegnato; - esame scritto, anche in lingua inglese, su argomento assegnato. La forma dell'esame viene concordata tra lo studente e il docente referente (relatore) il quale è membro della commissione d'esame. La valutazione dell'esame è basata sul livello di approfondimento dimostrato dallo studente, sulla chiarezza espositiva, e sulla capacità dello studente di inquadrare l'argomento assegnato in un contesto più ampio.

Svolgimento della prova finale.

La/lo studentessa/studente potrà avvalersi del supporto dei docenti del Dipartimento di Informatica per la scelta e l'approfondimento richiesto. È obbligo dei docenti fornire assistenza nell'ambito delle proprie attività di tutorato e ricevimento alle/agli studentesse/studenti per quanto riguarda l'approfondimento richiesto. Il punteggio finale di Laurea è stabilito da una apposita commissione di Laurea secondo le modalità indicate nel Regolamento di Ateneo, che esprime un giudizio finale in centodecimi con eventuale lode. Il punteggio minimo per il superamento dell'esame finale è di 66/110. II voto di ammissione è determinato rapportando la media pesata sui CFU degli esami di profitto a 110 e successivamente arrotondando il risultato all'intero più vicino. A parità di distanza, si arrotonda all'intero superiore. Per media degli esami di profitto si intende la media ponderata sui crediti. E' previsto un incremento al massimo di 8/110 rispetto al voto di ammissione, di cui 4 punti riservati alla valutazione dell'esame di laurea e 4 punti riservati alla valutazione del curriculum della/o studentessa/studente. La valutazione del curriculum avviene attraverso un calcolo che tiene conto positivamente delle lodi conseguite e degli eventuali periodi di Erasmus, mentre tiene conto negativamente degli eventuali anni fuori corso: se in corso: 3,5 + 0,2 * numero lodi; se fuori corso: 3,5 – 0,5* numero anni fuori corso + 0,1 * numero lodi; 1 punto ogni 3 mesi di Erasmus effettuato. L'attribuzione della lode, nel caso di un incremento che porti ad una votazione che raggiunga o superi 110/110, è a discrezione della commissione di Laurea nonché attribuita se il parere dei membri della commissione è unanime. Il relatore dell'esame di laurea potrà essere un qualunque docente strutturato dell'Ateneo che soddisfa almeno uno dei seguenti requisiti: componente del Collegio Didattico del corso di laurea, oppure componente del Dipartimento di Informatica, oppure che insegna in un SSD presente nel piano del corso di laurea.

Elenco delle proposte di tesi e stage

Proposte di tesi Area di ricerca
Analisi e percezione dei segnali biometrici per l'interazione con robot AI, Robotics & Automatic Control - AI, Robotics & Automatic Control
Integrazione del simulatore del robot Nao con Oculus Rift AI, Robotics & Automatic Control - AI, Robotics & Automatic Control
Domain Adaptation Computer Science and Informatics: Informatics and information systems, computer science, scientific computing, intelligent systems - Computer graphics, computer vision, multi media, computer games
Domain Adaptation Computer Science and Informatics: Informatics and information systems, computer science, scientific computing, intelligent systems - Machine learning, statistical data processing and applications using signal processing (e.g. speech, image, video)
Tesi in ragionamento automatico Computing Methodologies - ARTIFICIAL INTELLIGENCE
Domain Adaptation Computing Methodologies - IMAGE PROCESSING AND COMPUTER VISION
Domain Adaptation Computing methodologies - Machine learning
Dati geografici Information Systems - INFORMATION SYSTEMS APPLICATIONS
Analisi e percezione dei segnali biometrici per l'interazione con robot Robotics - Robotics
Integrazione del simulatore del robot Nao con Oculus Rift Robotics - Robotics
Tesi in ragionamento automatico Theory of computation - Logic
Tesi in ragionamento automatico Theory of computation - Semantics and reasoning
Proposte di tesi/collaborazione/stage in Intelligenza Artificiale Applicata Argomenti vari
Proposte di Tesi/Stage/Progetto nell'ambito delle basi di dati/sistemi informativi Argomenti vari

Area riservata studenti


Modalità di frequenza

Come riportato al punto 25 del Regolamento Didattico per l'A.A. 2021/2022, la frequenza al corso di studio non è obbligatoria.
Per le modalità di erogazione della didattica, si rimanda alle informazioni in costante aggiornamento dell'Unità di Crisi.

Gestione carriere


Ulteriori servizi

I servizi e le attività di orientamento sono pensati per fornire alle future matricole gli strumenti e le informazioni che consentano loro di compiere una scelta consapevole del corso di studi universitario.