Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

Academic calendar

The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.

Academic calendar

Course calendar

The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..

Definition of lesson periods
Period From To
I sem. Oct 2, 2017 Jan 31, 2018
II sem. Mar 1, 2018 Jun 15, 2018
Exam sessions
Session From To
Sessione invernale d'esame Feb 1, 2018 Feb 28, 2018
Sessione estiva d'esame Jun 18, 2018 Jul 31, 2018
Sessione autunnale d'esame Sep 3, 2018 Sep 28, 2018
Degree sessions
Session From To
Sessione di laurea estiva Jul 18, 2018 Jul 18, 2018
Sessione di laurea autunnale Nov 22, 2018 Nov 22, 2018
Sessione di laurea invernale Mar 20, 2019 Mar 20, 2019
Holidays
Period From To
Christmas break Dec 22, 2017 Jan 7, 2018
Easter break Mar 30, 2018 Apr 3, 2018
Patron Saint Day May 21, 2018 May 21, 2018
Vacanze estive Aug 6, 2018 Aug 19, 2018

Exam calendar

Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.

Exam calendar

Should you have any doubts or questions, please check the Enrolment FAQs

Academic staff

B C D F G M O P Q S T U V

Baruffi Maria Caterina

symbol email mariacaterina.baruffi@univr.it

Belussi Alberto

symbol email alberto.belussi@univr.it symbol phone-number +39 045 802 7980

Bombieri Nicola

symbol email nicola.bombieri@univr.it symbol phone-number +39 045 802 7094

Bonacina Maria Paola

symbol email mariapaola.bonacina@univr.it symbol phone-number +39 045 802 7046

Boscaini Maurizio

symbol email maurizio.boscaini@univr.it

Busato Federico

symbol email federico.busato@univr.it

Calanca Andrea

symbol email andrea.calanca@univr.it symbol phone-number +39 045 802 7847

Carra Damiano

symbol email damiano.carra@univr.it symbol phone-number +39 045 802 7059

Castellini Alberto

symbol email alberto.castellini@univr.it symbol phone-number +39 045 802 7908

Combi Carlo

symbol email carlo.combi@univr.it symbol phone-number 045 802 7985

Cristani Matteo

symbol email matteo.cristani@univr.it symbol phone-number 045 802 7983

Cristani Marco

symbol email marco.cristani@univr.it symbol phone-number +39 045 802 7841

Daffara Claudia

symbol email claudia.daffara@univr.it symbol phone-number +39 045 802 7942

Dall'Alba Diego

symbol email diego.dallalba@univr.it symbol phone-number +39 045 802 7074

Di Pierro Alessandra

symbol email alessandra.dipierro@univr.it symbol phone-number +39 045 802 7971

Fiorini Paolo

symbol email paolo.fiorini@univr.it symbol phone-number 045 802 7963

Fraccaroli Enrico

symbol email enrico.fraccaroli@univr.it symbol phone-number 0458027048

Fummi Franco

symbol email franco.fummi@univr.it symbol phone-number 045 802 7994

Geretti Luca

symbol email luca.geretti@univr.it symbol phone-number +39 045 802 7850

Giachetti Andrea

symbol email andrea.giachetti@univr.it symbol phone-number +39 045 8027998

Giacobazzi Roberto

symbol email roberto.giacobazzi@univr.it symbol phone-number +39 045 802 7995

Gregorio Enrico

symbol email Enrico.Gregorio@univr.it symbol phone-number 045 802 7937

Maris Bogdan Mihai

symbol email bogdan.maris@univr.it symbol phone-number +39 045 802 7074

Marzola Pasquina

symbol email pasquina.marzola@univr.it symbol phone-number 045 802 7816 (ufficio); 045 802 7614 (laboratorio)

Mastroeni Isabella

symbol email isabella.mastroeni@univr.it symbol phone-number +39 045 802 7089

Migliorini Sara

symbol email sara.migliorini@univr.it symbol phone-number +39 045 802 7908

Muradore Riccardo

symbol email riccardo.muradore@univr.it symbol phone-number +39 045 802 7835

Oliboni Barbara

symbol email barbara.oliboni@univr.it symbol phone-number +39 045 802 7077

Posenato Roberto

symbol email roberto.posenato@univr.it symbol phone-number +39 045 802 7967

Pravadelli Graziano

symbol email graziano.pravadelli@univr.it symbol phone-number +39 045 802 7081

Quaglia Davide

symbol email davide.quaglia@univr.it symbol phone-number +39 045 802 7811

Quintarelli Elisa

symbol email elisa.quintarelli@univr.it symbol phone-number +39 045 802 7852

Segala Roberto

symbol email roberto.segala@univr.it symbol phone-number 045 802 7997

Setti Francesco

symbol email francesco.setti@univr.it symbol phone-number +39 045 802 7804

Spoto Nicola Fausto

symbol email fausto.spoto@univr.it symbol phone-number +39 045 8027940

Storti Silvia Francesca

symbol email silviafrancesca.storti@univr.it symbol phone-number +39 045 802 7908

Tomazzoli Claudio

symbol email claudio.tomazzoli@univr.it

Study Plan

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University. Please select your Study Plan based on your enrolment year.

activated in the A.Y. 2018/2019
ModulesCreditsTAFSSD
12
B
INF/01
6
C
FIS/01
6
B
ING-INF/05
12
B
ING-INF/05
activated in the A.Y. 2019/2020
ModulesCreditsTAFSSD
12
B
ING-INF/05
One course to be chosen among the following
6
B
INF/01
Training
6
F
-
Final exam
6
E
-

2° Year activated in the A.Y. 2018/2019

ModulesCreditsTAFSSD
12
B
INF/01
6
C
FIS/01
6
B
ING-INF/05
12
B
ING-INF/05

3° Year activated in the A.Y. 2019/2020

ModulesCreditsTAFSSD
12
B
ING-INF/05
One course to be chosen among the following
6
B
INF/01
Training
6
F
-
Final exam
6
E
-

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




S Placements in companies, public or private institutions and professional associations

Teaching code

4S00037

Credits

12

Coordinatore

Alberto Belussi

Language

Italian

Scientific Disciplinary Sector (SSD)

ING-INF/05 - INFORMATION PROCESSING SYSTEMS

The teaching is organized as follows:

Teoria

Credits

6

Period

I semestre

Academic staff

Alberto Belussi

Laboratorio

Credits

3

Period

II semestre

Academic staff

Roberto Posenato

Tecnologie per le basi di dati

Credits

3

Period

II semestre

Academic staff

Alberto Belussi

Learning outcomes

The course aims to provide the necessary skills for:
(i) the design of data according to the requirements with reference to different application contexts and within the production process of software systems;
(ii) effective and efficient management and use of data;
(iii) the use of a system for the management of relational databases in order to create, manage and query databases;
(iv) the interaction of applications with relational databases.

At the end of the course the student must demonstrate knowledge and understanding of data models and query languages ​​that characterize systems for data management and knowledge of the fundamental mechanisms to develop applications that interact with a database; have the ability to apply the acquired knowledge and understanding skills for the design of a data collection in an effective way compared to a set of application requirements, the ability to query and efficiently use the data managed by a system, the ability to design and implement an application that interacts with a database; know how to develop the skills necessary to continue the studies independently in the field of data management systems and software solutions development.

Program

The program is specified for each module as follows.

Module of Theory
--------------------------
- Introduction to database management systems (DBMS): architectures and functionalities of a DBMS. Physical and logical data independence. Data models. Concepts of model, schema and instance of a database. Languages for database systems. DBMS vs. file system.
- Conceptual database design: conceptual data models. The Entity-Relationship model (ER). Elements of the ER model: entities, attributes, relationships, ISA hierarchies and cardinality constraints.
- Logical database design: logical data models, the relational data model. Elements of the relational data models: relations and integrity constraints. Mapping between conceptual schemas in ER model and logical schema in the relational model.
- Interacting with a database system: languages for the definition, querying and update of a database. The relational algebra. Optimization of algebraic expressions. SQL: select-from-where statement, join in SQL, the GROUP BY and ORDER BY clauses, using subqueries. Views.

Teaching methods: lecturing, practicing with the teacher, didactical material (slides) and further exercises available on the eLearning platform, individual meetings during office hours according to the timetable published on the teacher web page.

Module of Lab
---------------------
- Introduction to the relational database management system (RDBMS) PostgreSQL.
- Introduction to the use of SQL in PostgreSQL.
- Query Optimization.
- Introduction to the transaction.
- Introduction to Python Language.
- Database access from applications written in Java/Python.

Lecturing and practicing in computer laboratory, didactical material (slides) and further exercise texts are available on the eLearning platform, the teacher is available for individual meeting in office hours.

Module of Database technology
----------------------------------------------
- The internal architecture of a DBMS. Transactions. Transactions properties. The concurrency control: schedules, the two-phase locking. Access methods (indexes): primary and secondary indexes, B-+tree, hashing based access methods. Query execution and optimization.
- Techniques for the interaction between a DBMS and an application.
- XML, XML schema, UML for XML data design (hints).

Teaching methods: lecturing, practicing with the teacher, didactical material (slides) and further exercises available on the eLearning platform, individual meetings during office hours according to the timetable published on the teacher web page.

Bibliography

Reference texts
Activity Author Title Publishing house Year ISBN Notes
Teoria Paolo Atzeni, Stefano Ceri, Piero Fraternali, Stefano Paraboschi, Riccardo Torlone Basi di dati (Edizione 5) McGraw Hill 2018 9788838694455
Laboratorio Docente del corso Dispense del docente 2020
Laboratorio Autori Vari Manuale di Postgresql (https://www.postgresql.org/docs/) Postgresql  
Tecnologie per le basi di dati Paolo Atzeni, Stefano Ceri, Piero Fraternali, Stefano Paraboschi, Riccardo Torlone Basi di dati (Edizione 5) McGraw Hill 2018 9788838694455

Examination Methods

The exam is composed of two parts: theory and laboratory.

To pass the exam, the student must show that:
- they have understood the concepts related to the theory of relational databases and their design and implementation on database management systems
- they are able to describe the concepts in a clear and exhaustive way without digressions
- they are able to apply the acquired knowledge to solve application scenarios described by means of exercises, questions and projects.

Module of Theory and Database technology
----------------------------------------------------------------
For the modules of "Teoria" and "Tecnologie per le basi di dati" the exam consists of a written test with a duration of 2.5 hours containing: (i) an exercise about the conceptual modeling (using the E-R model) and the logical modeling (using the relational model) of a database; (ii) some exercises about the specification of queries in relational algebra on a given database; (iii) some exercises on XML and XML-Schema and some questions on the theory. On the e-learning platform in the section "TEMI D'ESAME E ALTRI ESERCIZI RIEPILOGATIVI" some tests of the previous years are published.
During the year, it is also possible to undergo the mid-term tests: these tests are fixed by the teacher in agreement with the students and are managed on the eLearning platform. These are three tests: the first test regards the design of a relational database: conceptual design (E-R model) and logic design (relational model), this weighs 4/9 of the theory grade; the second test regards the specification of queries on a relational database in relational algebra and SQL, this test weighs 3/9 of the theory grade; the third test on the program module of Databases Technologies, the latter test weighs 2/9 of the theory grade.

Module of Laboratorio
---------------------------------
The examination consists of a written test containing 5 exercises based on the module program and of an oral examination where it may be required to resolve questions using the computer.
A student who obtains less than 13/30 in a written exam, will also have to take an oral examination once it has passed the written exam obtaining 18/30 at least. The final grade will be the average of two grades. The grade in this module is worth 1/4 of the grade in the course examination. A selection of previous exam tests is published at http://profs.scienze.univr.it/~posenato/courses/labBD/raccoltaTemiEsameLaboratorioBasiDatiDal2016.pdf

The total grade (theory+laboratory) is given by the following weighted average: theory_grade*3/4 + laboratory_grade*1/4.

???AdattamentoProvaEsameDSA???

Type D and Type F activities

Modules not yet included

Career prospects


Module/Programme news

News for students

There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details.

Graduation

For schedules, administrative requirements and notices on graduation sessions, please refer to the Graduation Sessions - Science and Engineering service.

List of theses and work experience proposals

theses proposals Research area
Analisi e percezione dei segnali biometrici per l'interazione con robot AI, Robotics & Automatic Control - AI, Robotics & Automatic Control
Integrazione del simulatore del robot Nao con Oculus Rift AI, Robotics & Automatic Control - AI, Robotics & Automatic Control
Domain Adaptation Computer Science and Informatics: Informatics and information systems, computer science, scientific computing, intelligent systems - Computer graphics, computer vision, multi media, computer games
Domain Adaptation Computer Science and Informatics: Informatics and information systems, computer science, scientific computing, intelligent systems - Machine learning, statistical data processing and applications using signal processing (e.g. speech, image, video)
BS or MS theses in automated reasoning Computing Methodologies - ARTIFICIAL INTELLIGENCE
Domain Adaptation Computing Methodologies - IMAGE PROCESSING AND COMPUTER VISION
Domain Adaptation Computing methodologies - Machine learning
Dati geografici Information Systems - INFORMATION SYSTEMS APPLICATIONS
Analisi e percezione dei segnali biometrici per l'interazione con robot Robotics - Robotics
Integrazione del simulatore del robot Nao con Oculus Rift Robotics - Robotics
BS or MS theses in automated reasoning Theory of computation - Logic
BS or MS theses in automated reasoning Theory of computation - Semantics and reasoning
Proposte di tesi/collaborazione/stage in Intelligenza Artificiale Applicata Various topics
Proposte di Tesi/Stage/Progetto nell'ambito delle basi di dati/sistemi informativi Various topics

Attendance

As stated in the Teaching Regulations for the A.Y. 2022/2023, attendance at the course of study is not mandatory.
Please refer to the Crisis Unit's latest updates for the mode of teaching.


Career management


Student login and resources