Studying at the University of Verona
Academic calendar
The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.
Course calendar
The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..
Period | From | To |
---|---|---|
Giornata d accoglienza matricole - Aula Magna Lente didattica Policlinico ore 9 | Sep 24, 2024 | Sep 24, 2024 |
1° semestre | Oct 2, 2024 | Dec 20, 2024 |
2° semestre | Feb 17, 2025 | May 30, 2025 |
Session | From | To |
---|---|---|
Sessione invernale | Jan 7, 2025 | Feb 14, 2025 |
Iscrizione ai corsi elettivi II semestre | Jan 9, 2025 | Feb 14, 2025 |
Sessione estiva | Jun 3, 2025 | Jul 25, 2025 |
Sessione Autunnale | Sep 1, 2025 | Sep 30, 2025 |
Period | From | To |
---|---|---|
Tutti i Santi | Nov 1, 2024 | Nov 1, 2024 |
Festa dell'Immacolata | Dec 8, 2024 | Dec 8, 2024 |
Vacanze di Natale | Dec 23, 2024 | Jan 2, 2025 |
Vacanze di Pasqua | Apr 18, 2025 | Apr 21, 2025 |
Festa della liberazione | Apr 25, 2025 | Apr 25, 2025 |
Festa del lavoro | May 1, 2025 | May 1, 2025 |
Festa del Santo Patrono | May 21, 2025 | May 21, 2025 |
Vacanze estive | Aug 11, 2025 | Aug 15, 2025 |
Exam calendar
Exam dates and rounds are managed by the relevant Medicine Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.
Academic staff
Study Plan
The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University.
Please select your Study Plan based on your enrollment year.
1° Year
Modules | Credits | TAF | SSD |
---|
2° Year It will be activated in the A.Y. 2025/2026
Modules | Credits | TAF | SSD |
---|
3° Year It will be activated in the A.Y. 2026/2027
Modules | Credits | TAF | SSD |
---|
4° Year It will be activated in the A.Y. 2027/2028
Modules | Credits | TAF | SSD |
---|
5° Year It will be activated in the A.Y. 2028/2029
Modules | Credits | TAF | SSD |
---|
6° Year It will be activated in the A.Y. 2029/2030
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Legend | Type of training activity (TTA)
TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.
Artificial intelligence (It will be activated in the A.Y. 2027/2028)
Teaching code
4S012576
Credits
5
Scientific Disciplinary Sector (SSD)
-
Learning objectives
Human Pathology
The course is aimed at teaching knowledge and skills regarding human pathology with a systematic approach divided by pathology topics (inflammatory, degenerative and neoplastic pathology) and divided by districts and systems (pathology of the gastrointestinal tract, urogenital, pathology of the endocrine system, central nervous system, soft tissue and skin, head and neck area, respiratory system, breast pathology, and haemolymphatic system pathology). The integration of the study of pathologies with the knowledge of immunohistochemical and molecular methods with diagnostic, prognostic and predictive value and of bioinformatics concepts applied to the genetics of tumors is envisaged. The training course also includes the teaching of modern digital technologies that characterize "Digital Pathology" with concepts of image analysis and application of artificial intelligence systems applied to histopathology. Furthermore, in-depth analysis of laboratory management software (LIS) is provided with particular attention to the concepts of traceability and sharing.
Machine Learning Module
The module aims to provide the fundamentals of machine learning, particularly the prediction techniques most used in the diagnostic field. The concepts of clustering, regression, and supervised classification will be introduced, showing, also with laboratory activities, the leading classical techniques and those based on neural networks.
Examination Methods
The exam consists of an oral test aimed at verifying knowledge of the course contents. Machine Learning Module Verification of learning will be carried out through: -written test with questions and exercises, -evaluation of laboratory activities.
Evaluation criteria
The oral test assesses the level of knowledge of the theoretical contents, the ability to use language in describing pathologies and their specific diagnostic, prognostic and predictive factors. The exam also tests the student's logical/deductive skills and his knowledge of the application of new "Digital Pathology" technologies supported by artificial intelligence systems in the context of specific laboratory management software that guarantee traceability and sharing concepts. Machine Learning Module At the end of the course the student must be able to: -understand the fundamentals of the main machine learning algorithms used in the medical field, -evaluate the performance of different AI-based methodologies and choose the most appropriate approach for a specific problem, -analyze the design choices of an application that uses AI. The final grade is given by the positive evaluation for a score equal to or greater than 18/30 in each module.
Free choice courses
Modules not yet included
Career prospects
Module/Programme news
News for students
There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details: only in this way will you be able to receive notification of all the notices from your teachers and your secretariat via email and also via the Univr app.
Erasmus+ e altre esperienze all’estero
Attività didattiche elettive (ADE)
Orario delle lezioni
Frequenza alle lezioni
Non è possibile anticipare la frequenza alle lezioni e alle attività pratiche, così come l’esame di insegnamenti previsti in anni di corso successivi a quello di iscrizione; non è possibile altresì anticipare al 1° semestre l’espletamento di esami le cui lezioni sono previste nel 2° semestre del medesimo anno di corso. Per poter accedere alle prove d’esame o all’acquisizione delle idoneità è necessaria la frequenza di tutte le attività previste nel piano di studio.
Agli effetti dell’ammissione agli esami di profitto del corso di laurea, gli studenti sono tenuti a rispettare le propedeuticità previste dal Regolamento Didattico.
Ore e Crediti Formativi Universitari (CFU)
Ai fini del raggiungimento degli obiettivi formativi, il CdS prevede 360 CFU complessivi. Ad ogni CFU corrispondono 25 ore di lavoro dello studente e della studentessa che, a seconda della tipologia didattica, sono suddivise in:
- Lezioni fontali: di norma 12 ore/CFU di lezione e 13 ore di studio individuale;
- Attività didattica tutoriale (Problem Based Learning, Problem Solving, Decision Making): di norma 15 ore/CFU di lavoro di gruppo e 10 ore di studio individuale;
- Attività didattiche elettive (ADE): di norma 22 ore/CFU di attività e 3 ore di studio individuale;
- Attività pratiche e svolgimento tesi: 25 ore/CFU;
- Tirocinio pratico-valutativo per l’abilitazione all’esercizio della professione di Medico Chirurgo: 25 ore/CFU per tirocini in Area Medica e Area Chirurgica; 20 ore/CFU per tirocinio in Area Medicina Generale.
Per ulteriori informazioni fare riferimento al Regolamento didattico dell'anno di immatricolazione
a.a. 2024-25 Incontri con la Segreteria didattica del CdS
1° anno martedì 24 settembre 2024 – ore 9.00: giornata accoglienza matricole - Aula Magna “G. De Sandre”- Lente didattica
1° anno Presentazione corsi elettivi - novembre 2024 data da definire
Documents
Title | Info File |
---|---|
Orari - 1° Semestre | pdf, it, 260 KB, 03/10/24 |
Orari Analitici - 1° Semestre | pdf, it, 37 KB, 03/10/24 |
Gestione carriere
Prova Finale
La prova finale (tesi di laurea), consiste in un elaborato scritto, in italiano o in inglese, che permette allo studente e alla studentessa di acquisire la capacità di elaborazione e di organizzazione sia dei risultati della propria ricerca che delle informazioni ricavate dalla letteratura scientifica.
La tesi di laurea può essere di tipo: compilativa o di ricerca sperimentale.
Modalità e sedi di frequenza
La frequenza è obbligatoria.
Maggiori dettagli in merito all'obbligo di frequenza vengono riportati nel Regolamento del corso di studio disponibile alla voce Regolamenti nel menu Il Corso. Anche se il regolamento non prevede un obbligo specifico, verifica le indicazioni previste dal singolo docente per ciascun insegnamento o per eventuali laboratori e/o tirocinio.
Non è consentita l'iscrizione a tempo parziale. Per saperne di più consulta la pagina Possibilità di iscrizione Part time.
Le sedi di svolgimento delle lezioni e degli esami sono le seguenti: