Studying at the University of Verona
Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.
Academic calendar
The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.
Course calendar
The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..
Period | From | To |
---|---|---|
I sem. | Oct 3, 2016 | Jan 31, 2017 |
II sem. | Mar 1, 2017 | Jun 9, 2017 |
Session | From | To |
---|---|---|
Sessione invernale Appelli d'esame | Feb 1, 2017 | Feb 28, 2017 |
Sessione estiva Appelli d'esame | Jun 12, 2017 | Jul 31, 2017 |
Sessione autunnale Appelli d'esame | Sep 1, 2017 | Sep 29, 2017 |
Session | From | To |
---|---|---|
Sessione estiva Appelli di Laurea | Jul 18, 2017 | Jul 18, 2017 |
Sessione autunnale Appelli di laurea | Nov 22, 2017 | Nov 22, 2017 |
Sessione invernale Appelli di laurea | Mar 20, 2018 | Mar 20, 2018 |
Period | From | To |
---|---|---|
Festa di Ognissanti | Nov 1, 2016 | Nov 1, 2016 |
Festa dell'Immacolata Concezione | Dec 8, 2016 | Dec 8, 2016 |
Vacanze di Natale | Dec 23, 2016 | Jan 8, 2017 |
Vacanze di Pasqua | Apr 14, 2017 | Apr 18, 2017 |
Anniversario della Liberazione | Apr 25, 2017 | Apr 25, 2017 |
Festa del Lavoro | May 1, 2017 | May 1, 2017 |
Festa della Repubblica | Jun 2, 2017 | Jun 2, 2017 |
Vacanze estive | Aug 8, 2017 | Aug 20, 2017 |
Exam calendar
Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.
Academic staff
Bloisi Domenico Daniele
domenico.bloisi@univr.itUgolini Simone
simone.ugolini@univr.itStudy Plan
The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University.
Please select your Study Plan based on your enrollment year.
1° Year
Modules | Credits | TAF | SSD |
---|
2° Year activated in the A.Y. 2017/2018
Modules | Credits | TAF | SSD |
---|
3° Year activated in the A.Y. 2018/2019
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Legend | Type of training activity (TTA)
TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.
Molecular Biology (2017/2018)
Teaching code
4S004476
Teacher
Coordinator
Credits
6
Language
Italian
Scientific Disciplinary Sector (SSD)
BIO/11 - MOLECULAR BIOLOGY
Period
II sem. dal Mar 1, 2018 al Jun 15, 2018.
Learning outcomes
The aim of this course is to provide a detailed description at the molecular level of the main issues regarding the mechanisms involved transmission, variation and expression of the information contained in the genome of prokaryotes and eukaryotes. The main themes of the course will be a detailed description of the processes of gene transcription and translation and those related to DNA replication and mutagenesis.
Knowledge and understanding: the students will acquire knowledge of the fundamental structures of biological systems in a molecular and cellular view and of the mechanisms inherent to the transmission, manipulation and expression of the information contained in the genome of prokaryotes and eukaryotes.
Ability to apply the knowledge: the students will be able to read the genetic bases of life and to apply the acquired knowledge to use and possibly develop bioinformatic tools for the investigation of structure-function relationships of biological macromolecules and the regulation of their functions. They will be able to read and understand advanced biology textsbooks and undertake a master-level course in both biotechnology and bioinformatics.
Program
Program of the course:
The genetic information and informational molecules
General introduction and history. The structure of DNA and RNA. From genes to proteins, messenger RNA, transfer RNA and ribosomal RNA. The genetic code.
DNA and gene structure
The definition of gene. Coding and regulatory regions. Genes interrupted; introns.
Organization and evolution of genomes
DNA content and number of genes. Repetitive DNA. Gene families and gene duplication. Mutation, rearrangements of DNA and evolution of genomes.
The genomes of organelles.
Mobile genetic elements
Transposons,retrotransposons and retrovirus.
Chromatin and chromosomes
The nucleosomes; histones and their modifications. Higher levels of organization of chromatin. Eterochromatin and euchromatin. Eukaryotic chromosomes,telomers and centromeres.
DNA replication
The DNA polymerase. Proofreading activities of DNA polymerase.
The mechanism of replication in bacteria and eukaryotes.
Mutations and DNA repair
Spontaneous mutations and mutations caused by physical and chemical mutagens. Pre and post replication rapair systems. Recombination in immune system cells.
RNAs and transcription
The different types of RNA: synthesis and maturation. Bacterial RNA polymerase. The sigma factors. The eukaryotic RNA polymerase. Eukaryotic mRNA : capping, polyadenilation, transport in the cytoplasm. The process of transcription in bacteria and eukaryotes.
Regulation of gene expression
Bacterial promoters. Operons. Eukaryotic promoters. The regulation elements: enhancers, silencers, insulators, LCR. Gene expression and chromatin modifications. Epigenetic effects.
Introns and RNA Splicing
Spliceosomal introns. The spliceosome and mechanism of splicing. Alternative splicing and trans-Splicing. Other types of introns: group I and II introns. RNA editing. Ribozymes and riboswitch.
Translations
The ribosomes. Structure and function of tRNA. Synthesis of aminoacil-tRNA. Beginning of translation in bacteria and eukaryotes. Synthesis of polypeptides and termination of translation. Regulation of the translation. Location of proteins.
The teaching material used in class lessons is available on the e-learning platform of the course.
Suggested textbooks:
Lewin, The Gene - Compact Edition, Zanichelli
Cox, Molecular Biology, Zanichelli
Watson, Molecular Biology of the Genus, Zancihelli
Examination Methods
The exam consists of multiple-choice test.
Type D and Type F activities
Modules not yet included
Career prospects
Module/Programme news
News for students
There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details: only in this way will you be able to receive notification of all the notices from your teachers and your secretariat via email and also via the Univr app.
Tutoring faculty members
Graduation
Attendance modes and venues
As stated in the Teaching Regulations, attendance at the course of study is not mandatory.
Part-time enrolment is permitted. Find out more on the Part-time enrolment possibilities page.
The course's teaching activities take place in the Science and Engineering area, which consists of the buildings of Ca‘ Vignal 1, Ca’ Vignal 2, Ca' Vignal 3 and Piramide, located in the Borgo Roma campus.
Lectures are held in the classrooms of Ca‘ Vignal 1, Ca’ Vignal 2 and Ca' Vignal 3, while practical exercises take place in the teaching laboratories dedicated to the various activities.