Studying at the University of Verona

Academic calendar

The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.

Academic calendar

Course calendar

The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..

Definition of lesson periods
Period From To
LEZIONI 1° E 2° SEMESTRE Oct 1, 2018 May 31, 2019
LEZIONI 1° SEMESTRE 2°-3°-4°-5°-6° ANNO Oct 1, 2018 Dec 21, 2018
LEZIONI I° SEMESTRE 1°ANNO Oct 15, 2018 Dec 21, 2018
LEZIONI 2° SEMESTRE Feb 18, 2019 May 31, 2019
Exam sessions
Session From To
SESSIONE INVERNALE A.A. 2017/2018 E 1°SEMESTRE A.A. 2018/2019 Jan 7, 2019 Feb 15, 2019
SESSIONE ESTIVA LAUREANDI Jun 3, 2019 Jul 5, 2019
SESSIONE ESTIVA A.A. 2018/2019 Jun 3, 2019 Jul 26, 2019
SESSIONE AUTUNNALE A.A. 2018/2019 Sep 2, 2019 Sep 27, 2019
Degree sessions
Session From To
SESSIONE INVERNALE Mar 4, 2019 Mar 15, 2019
SESSIONE ESTIVA Jul 15, 2019 Jul 31, 2019
SESSIONE AUTUNNALE Oct 14, 2019 Oct 25, 2019
Holidays
Period From To
FESTIVITA' OGNISSANTI Nov 1, 2018 Nov 1, 2018
FESTIVITA' IMMACOLATA CONCEZIONE Dec 8, 2018 Dec 8, 2018
VACANZE DI NATALE Dec 24, 2018 Jan 6, 2019
VACANZE DI PASQUA Apr 19, 2019 Apr 28, 2019
FESTA DELLA LIBERAZIONE Apr 25, 2019 Apr 25, 2019
FESTIVITA' DEL LAVORO May 1, 2019 May 1, 2019
FESTIVITA' DEL SANTO PATRONO SAN ZENO May 21, 2019 May 21, 2019
FESTA DELLA REPUBBLICA Jun 2, 2019 Jun 2, 2019
Other Periods
Description Period From To
TIROCINIO 1°SEMESTRE ESCLUSI I PERIODI DI VACANZA TIROCINIO 1°SEMESTRE ESCLUSI I PERIODI DI VACANZA Oct 1, 2018 Feb 17, 2019
ATTIVITA' FACOLTATIVA O DI RECUPERO TIROCINIO ATTIVITA' FACOLTATIVA O DI RECUPERO TIROCINIO Oct 1, 2018 Sep 30, 2019
TIROCINIO 2°SEMESTRE ESCLUSI I PERIODI DI VACANZA TIROCINIO 2°SEMESTRE ESCLUSI I PERIODI DI VACANZA Feb 18, 2019 Jul 26, 2019

Exam calendar

Exam dates and rounds are managed by the relevant Medicine Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.

Exam calendar

Should you have any doubts or questions, please check the Enrolment FAQs

Academic staff

A B C D F G I L M N P R S T Z

Albanese Massimo

symbol email massimo.albanese@univr.it symbol phone-number +39 045 812 4251/4024

Bazzoni Flavia

symbol email flavia.bazzoni@univr.it symbol phone-number +39 045 802 7128

Bertini Giuseppe

symbol email giuseppe.bertini@univr.it symbol phone-number 045-802-7682

Bertossi Dario

symbol email dario.bertossi@univr.it symbol phone-number +39 045 812 4096

Boschi Federico

symbol email federico.boschi@univr.it symbol phone-number +39 045 802 7272

Busetto Giuseppe

symbol email giuseppe.busetto@univr.it symbol phone-number +39 0458027290

Cane' Stefania

symbol email stefania.cane@univr.it symbol phone-number +39 045 8126449

Cassatella Marco Antonio

symbol email marco.cassatella@univr.it symbol phone-number 045 8027130

Chiamulera Cristiano

symbol email cristiano.chiamulera@univr.it symbol phone-number +39 045 8027277

Corsi Fabio

symbol email fabio.corsi@univr.it symbol phone-number 347 0076598

D'Agostino Antonio

symbol email antonio.dagostino@univr.it symbol phone-number +39 045 812 4023

Danese Elisa

symbol email elisa.danese@univr.it symbol phone-number +39 045 812 6698

De Franceschi Lucia

symbol email lucia.defranceschi@univr.it symbol phone-number 0458124918

De Leo Domenico

symbol email domenico.deleo@univr.it symbol phone-number +39 045 812 4942

De Santis Daniele

symbol email daniele.desantis@univr.it symbol phone-number +39 045 812 4251 - 4097

Donadello Katia

symbol email katia.donadello@univr.it symbol phone-number +39 045 812 4311

Fabene Paolo

symbol email paolo.fabene@univr.it symbol phone-number 0458027267

Fabrizi Gian Maria

symbol email gianmaria.fabrizi@univr.it symbol phone-number +39 0458124461

Faccioni Fiorenzo

symbol email fiorenzo.faccioni@ospedaleuniverona.it symbol phone-number +39 045 812 4251 - 4868

Gerosa Roberto

symbol email roberto.gerosa@univr.it symbol phone-number 0458124863

Girelli Massimo

symbol email massimo.girelli@univr.it symbol phone-number +39 0458027106

Girolomoni Giampiero

symbol email giampiero.girolomoni@univr.it symbol phone-number +39 045 812 2547

Gisondi Paolo

symbol email paolo.gisondi@univr.it symbol phone-number +39 045 812 2547

Iacono Calogero

symbol email calogero.iacono@univr.it symbol phone-number +39 045 812 4412

Lleo'Fernandez Maria Del Mar

symbol email maria.lleo@univr.it symbol phone-number 045 8027194

Lombardo Giorgio

symbol email giorgio.lombardo@univr.it symbol phone-number +39 045 812 4867

Luciano Umberto

symbol email umberto.luciano@univr.it symbol phone-number +39 045 807 4251

Maffeis Claudio

symbol email claudio.maffeis@univr.it symbol phone-number +39 045 812 7664

Majori Silvia

symbol email silvia.majori@univr.it symbol phone-number +39 045 8027653

Malchiodi Luciano

symbol email luciano.malchiodi@univr.it symbol phone-number +39 045 812 4855

Mansueto Giancarlo

symbol email giancarlo.mansueto@univr.it symbol phone-number 0458124301

Marchini Giorgio

symbol email giorgio.marchini@univr.it symbol phone-number +39 045 812 6140

Marchioni Daniele

symbol email daniele.marchioni@univr.it symbol phone-number +39 045 812 7669

Marchiori Mattia

symbol email mattia.marchiori@univr.it

Marcon Alessandro

symbol email alessandro.marcon@univr.it symbol phone-number +39 045 802 7668

Martignoni Guido

symbol email guido.martignoni@univr.it

Menegazzi Marta Vittoria

symbol email marta.menegazzi@univr.it symbol phone-number +39 045 802 7168

Mottes Monica

symbol email monica.mottes@univr.it symbol phone-number +39 045 8027 184

Nicoli Aldini Nicolo

symbol email nicolo.nicolialdini@gmail.com symbol phone-number 338 7363781

Nocini Pier Francesco

symbol email pierfrancesco.nocini@univr.it symbol phone-number + 39 045 812 4251

Polati Enrico

symbol email enrico.polati@univr.it symbol phone-number +39 045 812 7430 - 4311

Renna Dora

symbol email dora.renna@univr.it

Romanelli Maria

symbol email mariagrazia.romanelli@univr.it symbol phone-number +39 045 802 7182

Ruggeri Mirella

symbol email mirella.ruggeri@univr.it symbol phone-number 0458124953

Sboarina Andrea

symbol email andrea.sboarina@univr.it symbol phone-number +39 045 802 7291

Scupoli Maria

symbol email mariateresa.scupoli@univr.it symbol phone-number 045-8027405 045-8128425

Tinazzi Michele

symbol email michele.tinazzi@univr.it symbol phone-number +39 045 8122601

Trevisiol Lorenzo

symbol email lorenzo.trevisiol@univr.it symbol phone-number +39 045 812 4023

Zanolin Maria Elisabetta

symbol email elisabetta.zanolin@univr.it symbol phone-number +39 045 802 7654

Zerman Nicoletta

symbol email nicoletta.zerman@univr.it symbol phone-number + 39 045 812 4251 - 4857

Zotti Francesca

symbol email francesca.zotti@univr.it symbol phone-number +39 045 812 6938

Study Plan

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University. Please select your Study Plan based on your enrolment year.

ModulesCreditsTAFSSD
10
A
BIO/16
7
A
BIO/10
6
A
FIS/07
7
A
BIO/17
13
A/B/C
INF/01 ,MED/01 ,MED/02 ,M-PED/03 ,M-PSI/01
ModulesCreditsTAFSSD
7
A
BIO/10
20
B/C/F
- ,INF/01 ,MED/28 ,MED/43 ,MED/50
9
A
BIO/09
13
B
MED/04 ,MED/07 ,MED/42
ModulesCreditsTAFSSD
4
B/F
- ,MED/25 ,MED/26
13
B/F
- ,MED/18 ,MED/35 ,MED/41
3
B/F
- ,MED/28
5
B/F
- ,MED/28
ModulesCreditsTAFSSD
8
B/F
- ,MED/28
6
B/F
- ,MED/28
10
B/C/F
- ,MED/28 ,MED/29 ,MED/31
12
B/F
- ,MED/28
12
B/F
- ,MED/28
7
B/F
- ,MED/28 ,MED/38

1° Year

ModulesCreditsTAFSSD
10
A
BIO/16
7
A
BIO/10
6
A
FIS/07
7
A
BIO/17
13
A/B/C
INF/01 ,MED/01 ,MED/02 ,M-PED/03 ,M-PSI/01

2° Year

ModulesCreditsTAFSSD
7
A
BIO/10
20
B/C/F
- ,INF/01 ,MED/28 ,MED/43 ,MED/50
9
A
BIO/09
13
B
MED/04 ,MED/07 ,MED/42

4° Year

ModulesCreditsTAFSSD
4
B/F
- ,MED/25 ,MED/26
13
B/F
- ,MED/18 ,MED/35 ,MED/41
3
B/F
- ,MED/28
5
B/F
- ,MED/28

5° Year

ModulesCreditsTAFSSD
8
B/F
- ,MED/28
6
B/F
- ,MED/28
10
B/C/F
- ,MED/28 ,MED/29 ,MED/31
12
B/F
- ,MED/28
12
B/F
- ,MED/28
7
B/F
- ,MED/28 ,MED/38

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




S Placements in companies, public or private institutions and professional associations

Teaching code

4S01530

Coordinatore

Monica Mottes

Credits

8

Language

Italian

Scientific Disciplinary Sector (SSD)

BIO/13 - EXPERIMENTAL BIOLOGY

Period

LEZIONI 2° SEMESTRE dal Feb 18, 2019 al May 31, 2019.

Learning outcomes

To offer the basic knowledge of human biology in an evolutionary perspective, underlying the molecular and cellular processes shared by all living organisms.
To encourage students to critically evaluate experimental data by illustrating prime experiments of the past and contemporary biology.
To describe the following processes: duplication, transmission, expression of the hereditary information; how changes arise
To describe the hierarchy of master genes involved in tooth development and their interactions.
To offer an updated information about the recombinant DNA technology and its applications to dentistry
To teach the genetic bases of inherited diseases and how to interpret their modes of transmission
To illustrate in particular various genetic conditions affecting dental health. At the end of the course, students must demonstrate to have gotten acquainted with basic knowledge of cellular functions, cell reproduction, cell-cell interactions, organism-to –organism interactions and organisms-to-environment interactions. They must also demonstrate to know how genetic traits are transmitted (mendelian and post-mendelian genetics, population genetics). They should be able to recognize inheritance patterns of genetic disorders, in particolar those involving teeth devolopment and structure. All these notions are a pre-requisite for further in depth studies , which will be undertaken by the students in subsequent courses.

Program

Macromolecules common to living organisms: basic characteristics. Life’s origin: the chemical evolution hypothesis (Urey & & Miller experiment). The evolutionary theory proposed by Darwin. The modern vision of evolutionism. “Nothing in biology makes sense but in the light of evolution”. The evolution of human species. Model organisms in biology Three major groups of living organisms: Eubacteria, Archea, Eukarya. Main characteristics of Prokaryotes: cell structure, cell wall structure, genome, reproduction, habitats, interactions with other living organisms. Cyanobacteria: how they changed the terrestrial athmosphere. Evolution of eukaryotes, the endosymbiontic theory. Brief recall of organelles structure and functions (from the Citology module); roles and functions of the cell memebrane. From unicellular to multicellular eukaryotes. Cell communication, signal molecules. Cell growth and energetic metabolism in brief. Cell cycle and its regulation. Cell division (mitosis). The nucleus; DNA, chromatin, chromosomes. Cell death: apoptosis and necrosis. Ploidy and reproductive strategies; sexual reproduction. Meiosis and human gametogenesis. Nomal and pathological human karyotype. Methods of prenatal and post natal analysis . Cytogenetic anomalies and syndromes. Molecular biology: the historical experiments that led to the discovery of DNA as the genetic material (F.Miescher; Griffith, di Avery, McLeod e McCarty, Hershey e Chase) . The structure of the double helix (R.Franklin, M. Wilkins, J Watson & F Crick); DNA replication (Meselson & Stahl). Also RNA is an informational molecule (Fraenkel- Conrat).. DNA polymerase and DNA replication “in vivo”( in prokaryotes and eukaryotes) and “in vitro” (the PCR technique). Telomerase and telomeres replication. Denaturation, renaturation, hybridization of DNA molecules; molecular probes , applications (FISH). The informational flow: from DNA to proteins. A. Garrod’s studies, the “one gene-one enzyme hypothesis by Beedle & Tatum, the central dogma of molecular biology. Roles of various RNA species in the informational flow. Gene expression in prokaryotes, polycistronic RNAs, the operons. Gene transcription in eukaryotes, promoters, RNA polymerase II, RNA processing (splicing mechanism), alternative splicing and its evolutionary significance. mRNA translation, the genetic code, codons and anticodons, the “wobbling” theory. Protein synthesis in the eukaryotic cell post-translational modifications, protein sorting and secretion. The regulation of gene expression in eukaryotes. Chromatin structure and modifications. X chromosome inactivation in female somatic cells. DNA binding proteins which act as activators/repressors of transcription, DNA binding motives. The role of non-coding RNAs (nc-RNAs) The beta globin genes cluster: a paradigm of space/time regulation of gene expression Developmental biology. Master genes (e.g. the HOX selector genes) ; model organisms (Drosophila) Master genes which act in tooth development Cell reprogramming: from the beginning to nowadays (the experiments of Briggs, Wilmut and Dolly sheep, S. Yamanaka) Gene expression and sex determination (SRY and DAX1 genes). The human genome and its plasticity. Transposable elements, gene families, repeated sequences, pseudogenes. Genome evolution. Mutations: pre-adactativity ; mutations and selection, m. and fitness. Spontaneous mutations: how do they occur; induced mutations , types of mutagens , mode of action. DNA repair systems: Proof-read repair, MMR; DSB repair, BER, NER. Ames’ test for the identification of mutagens. Ionizing radiations, definition of LET and EBR. Somatic mutations and cancer: target genes in tumorigenesis (proto-oncogenes, oncosuppressor genes, DNA repair genes) The process of cell ageing: causes, consequences, antidotes. The recombinant DNA technology: principles, tools, applications. The production of therapeutic proteins. Transgenic animals: knock-out and knock-in mice. Genome editing Genetics. Mendel’s experiments. Allelic segregation , independent assortment. T. Morgan’s school: gene association and recombination. Genetic maps. Human genetics. Blood groups: ABO; Rh. Modes of inheritance: autosomal dominant/recessive, X linked. Various examples of inherited diseases; genetics of tooth anomalies and defects. Examples of pedigrees: how to interpret them correctly. Exceptions to Mendelism: a) cytoplasmic (mithocondrial) inheritance,; b) dynamic mutations; uniparental dysomies; Imprinted genes. Allelic and genotypic frequencies in populations. The Hardy Weinberg law: its conditions of validity, its exceptions How and when to apply it. DIDACTIC MODES Attendance to lessons is mandatory. Classes will consist of theorical lessons covering the whole exam program. Oral explanations will be coadiuvated by PowerPoint presentations and videos, which will be made available to students through a dedicated Department web site. Additional didactic supports (multiple choice quizzes for self-assessment, journal articles , reviews, etc.) may be suggested during the course and will be made available to students for download. During the whole Academic Year, students may request personal reception to the teachers, by e mail. -SUGGESTED TEXTBOOKS - Le basi della biologia (Cellula-Genetica-Evoluzione) H. Helena Curtis, et al., I edizione italiana, 2017 Zanichelli ed. Bologna, ISBN: 9788808768988 -Campbell Biologia e Genetica, Pearson Italia 2015; ISBN: 9788865189320

Reference texts
Author Title Publishing house Year ISBN Notes
Reece Urry Cain Wasserman Minorsky Jackson Campbell Biologia e Genetica (Edizione 1) Pearson 2015 9788865189320
Sadava, Hillis, Craig Heller, Hacker Elementi di Biologia e Genetica (Edizione 5) Zanichelli 2019 9788808820655

Examination Methods

Written test (25 multiple choice quizzes plus 5 open questions) concernin the entire program. Goals of the written test are: a) to monitor students’ learning process, b) to monitor students’ capacity of personal re-elaboration of notions, c) to monitor students’ ability to apply theoretical notions to experimental queries.
Score (in /30) of the written test strongly influences final outcome. A positive score will be achieved with at least 18 correct MCQ plus 1 open question. An oral examination may follow only if written text score is ≥ 18/30. Students can either retire from the examination or refuse the proposed score at any time. In both cases they shall enroll again for the whole examination (written and oral)

???AdattamentoProvaEsameDSA???

Free choice courses

Modules not yet included

Career prospects


Module/Programme news

News for students

There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details.

Graduation

Attachments

Title Info File
Doc_Univr_pdf Copertina tesi_fac simile 288 KB, 11/08/22 
Doc_Univr_pdf Norme redazionali della tesi di laurea 305 KB, 24/03/22 
Doc_Univr_pdf Regolamento esame finale 379 KB, 24/03/22 

Gestione carriere


Area riservata studenti