Studying at the University of Verona

This information is intended exclusively for students already enrolled in this course.
If you are a new student interested in enrolling, you can find information about the course of study on the course page:

Laurea magistrale a ciclo unico in Odontoiatria e protesi dentaria - Enrollment from 2025/2026

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University.
Please select your Study Plan based on your enrollment year.

1° Year

ModulesCreditsTAFSSD
10
A
BIO/16
7
A
BIO/10
6
A
FIS/07
7
A
BIO/17
13
A/B/C
INF/01 ,MED/01 ,MED/02 ,M-PED/03 ,M-PSI/01

2° Year  activated in the A.Y. 2019/2020

ModulesCreditsTAFSSD
7
A
BIO/10
20
B/C/F
- ,INF/01 ,MED/28 ,MED/43 ,MED/50
9
A
BIO/09
13
B
MED/04 ,MED/07 ,MED/42

3° Year  activated in the A.Y. 2020/2021

ModulesCreditsTAFSSD
14
B/C/F
- ,BIO/12 ,MED/09 ,MED/30
7
B
BIO/14

4° Year  activated in the A.Y. 2021/2022

ModulesCreditsTAFSSD
4
B/F
- ,MED/25 ,MED/26
13
B/F
- ,MED/18 ,MED/35 ,MED/41
3
B/F
- ,MED/28
5
B/F
- ,MED/28

5° Year  activated in the A.Y. 2022/2023

ModulesCreditsTAFSSD
8
B/F
- ,MED/28
6
B/F
- ,MED/28
10
B/C/F
- ,MED/28 ,MED/29 ,MED/31
12
B/F
- ,MED/28
12
B/F
- ,MED/28
7
B/F
- ,MED/28 ,MED/38

6° Year  activated in the A.Y. 2023/2024

ModulesCreditsTAFSSD
Final exam
10
E
-
ModulesCreditsTAFSSD
10
A
BIO/16
7
A
BIO/10
6
A
FIS/07
7
A
BIO/17
13
A/B/C
INF/01 ,MED/01 ,MED/02 ,M-PED/03 ,M-PSI/01
activated in the A.Y. 2019/2020
ModulesCreditsTAFSSD
7
A
BIO/10
20
B/C/F
- ,INF/01 ,MED/28 ,MED/43 ,MED/50
9
A
BIO/09
13
B
MED/04 ,MED/07 ,MED/42
activated in the A.Y. 2020/2021
ModulesCreditsTAFSSD
14
B/C/F
- ,BIO/12 ,MED/09 ,MED/30
7
B
BIO/14
activated in the A.Y. 2021/2022
ModulesCreditsTAFSSD
4
B/F
- ,MED/25 ,MED/26
13
B/F
- ,MED/18 ,MED/35 ,MED/41
3
B/F
- ,MED/28
5
B/F
- ,MED/28
activated in the A.Y. 2022/2023
ModulesCreditsTAFSSD
8
B/F
- ,MED/28
6
B/F
- ,MED/28
10
B/C/F
- ,MED/28 ,MED/29 ,MED/31
12
B/F
- ,MED/28
12
B/F
- ,MED/28
7
B/F
- ,MED/28 ,MED/38
activated in the A.Y. 2023/2024
ModulesCreditsTAFSSD
Final exam
10
E
-

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




S Placements in companies, public or private institutions and professional associations

Teaching code

4S01828

Credits

7

Language

Italian

Scientific Disciplinary Sector (SSD)

BIO/10 - BIOCHEMISTRY

Period

LEZIONI 2° SEMESTRE dal Feb 18, 2019 al May 31, 2019.

Learning outcomes

General aims of this education are to provide the essential elements to acquire the modern theories on the atomic and molecular structure of the inorganic and organic matter.
The students should be able to comprehend and analyse the macroscopic phenomena emerging from several molecular steps and should focus their attention on the importance of the energetic variations associated to the phenomena.
A major attention will be addressed to the study of the interactions present in the organic compounds, to help the student to acquire durable theoretical basis to understand the complex biochemical processes through a “molecular key”.
Specific aims are:
Understanding the electronic configuration in order to understand the properties 'periodic and reactivity' of chemical elements.
Understanding of changes in the external electronic structure in the molecules formation.
Understanding the nature of the forces between the molecules.
To explain the chemical and physical concepts of energy and balance, which regulate all biological phenomena.
Understanding the importance of water as a solvent in biological systems; understanding the properties of acids and bases. Understanding the concept of pH and buffer solutions in biological systems.
Understanding the meaning of osmotic flow and its importance in medicine.
Understanding the significance of reactions of electron transfer in biological systems.
Understanding the importance of the structure of organic molecules and recognize the different classes of organic compounds, their officials and their chemical reactivity.

Program

l. OBJECTIVE: understanding the electronic configuration in order to understand the properties 'periodic and reactivity' of chemical elements.
Contents: Specimen layout of the atom, mass and charge of subatomic particles, meaning of the atomic number and the mass number, mole, Avogadro's number. Electromagnetic radiation, quanta and photons. Optical spectra. Bohr's atomic model. Electron motion: atomic orbitals, energy levels defined by quantum numbers, orbital forms (s, p), the Pauli exclusion principle. Electronic structure of the elements: progressive filling of the orbitals, Hund's rule. Electronic formulas of the first 18 elements in a neutral manner and in ionic form. Reading and understanding of the periodic table of the elements. Periodical properties: effective nuclear charge, ionization energy, electronic affinity, formation of positive or negative ions; size of neutral atoms and ions, metallic character.
2. OBJECTIVE: understanding of changes in the external electronic structure in the molecules formation.
Contents: attractive and repulsive forces between the atoms in the formation of chemical bonds, bond energy and octet rule. Ionic bond, crystalline salts structure, reticular energy, charge density, ion properties of ionic compounds; pure covalent bond, overlap of atomic orbitals, covalent dative bond. Length of bound. Polarity of covalent bonding, dipole moment, electro negativity, concept of valence. Theory of molecular orbitals, ligand and anti-ligand region, energy orbitals. Hybrid orbitals: sp hybridization, sp2, sp3 and spatial geometry of the molecules. Length and energy of multiple bonds. Bonding orbitals: molecular orbitals of σ and П. Delocalization of the electrons of the П bond, resonance. Coordination compounds, bond in metals.

3. OBJECTIVE: understanding the nature of the forces between the molecules.
Contents: hydrogen bridge bonds, the hydrogen bond strength compared to that of the corresponding covalent bond. Water structure in solid, liquid, gaseous state.
Attractive forces between molecules: dipoles, permanent and instant dipoles.

4. OBJECTIVE: to explain the chemical and physical concepts of energy and balance, which regulate all biological phenomena.
Contents: differences in energy between the reactants and products: components of internal energy, heat and work, reaction heat, differences in enthalpy, exothermic and endothermic reactions, ∆H as the sum of the energies of the bonds split and bonds formed, heat of solution, Hess law. Criteria of spontaneity of reaction, reactions favored and not, entropy and the second law of thermodynamics; entropy change of the environment, differences of free energy, exergonic and endergonic reactions. Enthalpy, entropy and free energy in standard condition. Mathematical relationship between the differences of enthalpy, entropy and free energy; importance of temperature in determining the spontaneity of reactions. Reversible reactions, chemical equilibrium and equilibrium constant.
Equilibrium disturbances, principle of Le Chathelier; relation between equilibrium constant and free energy.
Coupling of exergonic reactions (eg hydrolysis of ATP) with endergonic reactions.
Elements of chemical kinetics: the activated complex theory, catalysts, slow stage of the reaction, reaction orders.

5. OBJECTIVE: understanding the importance of water as a solvent in biological systems; understanding the properties of acids and bases. Understanding the concept of pH and buffer solutions in biological systems.
Contents: Dielectric constant of water; solvation of the salts in aqueous solution; electrolytes, ionic surfactants, non-ionic and non-electrolytes: definition of acid and base; auto-ionization of water: ionic product of water. Strong acids and bases, acids and their conjugate bases, weak acids, strength of acid and the conjugate base, acid dissociation constant (Ka) and basic (Kb). Polyprotic acids. pH scale. Outline of acid-base titrations. Equivalent and normality. Buffer solutions. Henderson-Hasselbalch equation. Buffering capacity, carbonic acid-bicarbonate buffer.

6. OBJECTIVE: understanding the meaning of osmotic flow and its importance in medicine.
Contents: drop in vapor pressure. Osmotic pressure, law Wan't Hoff, osmotic pressure and electrolytes, osmolality. Tone of a solution.

7. OBJECTIVE: understanding the significance of reactions of electron transfer in biological systems.
Contents: oxidation number, rules for calculating the number of oxidants. Reactions coupled by oxidation and reduction; element reducing and oxidizing. Oxidation and reduction as: a) loss or acquisition of electrons, b) increase or decrease in the oxidation number, c) addition or subtraction of oxygen, d) removal or addition of hydrogen. Oxidizing agents and reducing agents. Galvanic cells (cell Zn-Cu), cell potential, standard potentials and equilibrium constant, potential and free energy: Nernst equation. Standard reduction potential E° of some half-reactions important in biochemistry.

8. OBJECTIVE: understanding the importance of the structure of organic molecules and recognize the different classes of organic compounds, their officials and their chemical reactivity.
Contents: bonds between carbon atoms, structural formulas, isomers. Hydrocarbons: three-dimensional structure and hybrid orbitals and chemical reactivity in alkanes, alkenes, alkynes. Overview of the main rules of IUPAC nomenclature. Degree of unsaturation. Effect of hyperconjugation. Nucleophilic and electrophilic reagents. Addition reactions in alkenes, electrophilic addition, regio-selectivity, order of stability of carbocations, nucleophilic addition to alpha-beta unsaturated carbonyl compounds, and conjugated dienes. Aromatic hydrocarbons, structures and resonance energy, rule of Huckel, aromaticity, electrophilic aromatic substitution. Heterocyclic aromatic compounds: solubility, acid-basic features. Functional groups containing heteroatoms: amines (primary, secondary and tertiary), structure, solubility and reactivity; imines. Alcohols: chemical and physical characteristics, primary, secondary and tertiary alcohols; ethers. Homolytic and heterolytic rupture of bonds, stabilization of radicals, conjugation radicals, carbocations and carbanions. Carbonyl compounds: aldehydes and ketones, resonance structures, reactivity of the carbonyl functional group, nucleophilic attack to the carbonyl carbon, oxygen electrophilic attack, formation of hemiacetals. Carboxylic acids, solubility, reactivity of the carboxyl group. Carboxylic acid derivatives: formation of esters, amides, imides, anhydrides. Resonance and relative reactivity of the derivatives of carboxylic acids. Thiols, functional group, solubility compared to alcohols, oxidation reactions. High energy compounds: thioesters and esters, comparing the free energies of hydrolysis; mixed anhydrides, phosphoric anhydride, ∆G hydrolysis of the ATP binds. Tautomery cheto¬enolic, phosphoenolpyruvate. Factors affecting the acidity of organic compounds: electronegativity, bond energy, steric effects, inductive effects, effects of hybridization, resonance effects, aromaticity. Acidity of the carbon in alpha to a carbonyl group. Oxidation states of carbon and nitrogen in organic compounds, oxidation-reduction reactions. Chirality, enantiomers, diastereoisomers. Carbohydrates: monosaccharides, aldoses and ketosis, Fisher projections, series D, cyclic structure, physical properties and reactivity, glycoside bond, disaccharides, polysaccharides. Generalities on fatty acids.

Reference texts
Author Title Publishing house Year ISBN Notes
Brown, Lemay, Burstem, Murphy, Woodward Fondamenti di chimica (Edizione 3) EdiSES 2012 978-88-7959-692-3
John McMurry Fondamenti di Chimica Organica (Edizione 3) Zanichelli   8808075397

Examination Methods

Written test concerning the calculations of solution concentrations, pH of buffer solutions, deltaG, electrical potential and osmolality. To be admitted to the oral examination it is necessary to exceed 70% of the exercises. The oral examination will concern on all program topics.

Students with disabilities or specific learning disorders (SLD), who intend to request the adaptation of the exam, must follow the instructions given HERE