Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

Type D and Type F activities

Le attività formative di tipologia D sono a scelta dello studente, quelle di tipologia F sono ulteriori conoscenze utili all’inserimento nel mondo del lavoro (tirocini, competenze trasversali, project works, ecc.). In base al Regolamento Didattico del Corso, alcune attività possono essere scelte e inserite autonomamente a libretto, altre devono essere approvate da apposita commissione per verificarne la coerenza con il piano di studio. Le attività formative di tipologia D o F possono essere ricoperte dalle seguenti attività.

1. Insegnamenti impartiti presso l'Università di Verona

Comprendono gli insegnamenti sotto riportati e/o nel Catalogo degli insegnamenti (che può essere filtrato anche per lingua di erogazione tramite la Ricerca avanzata).

Modalità di inserimento a libretto: se l'insegnamento è compreso tra quelli sottoelencati, lo studente può inserirlo autonomamente durante il periodo in cui il piano di studi è aperto; in caso contrario, lo studente deve fare richiesta alla Segreteria, inviando a carriere.scienze@ateneo.univr.it il modulo nel periodo indicato.

2. Attestato o equipollenza linguistica CLA

Oltre a quelle richieste dal piano di studi, per gli immatricolati dall'A.A. 2021/2022 vengono riconosciute:

  • Lingua inglese: vengono riconosciuti 3 CFU per ogni livello di competenza superiore a quello richiesto dal corso di studio (se non già riconosciuto nel ciclo di studi precedente).
  • Altre lingue e italiano per stranieri: vengono riconosciuti 3 CFU per ogni livello di competenza a partire da A2 (se non già riconosciuto nel ciclo di studi precedente).

Tali cfu saranno riconosciuti, fino ad un massimo di 6 cfu complessivi, di tipologia F se il piano didattico lo consente, oppure di tipologia D. Ulteriori crediti a scelta per conoscenze linguistiche potranno essere riconosciuti solo se coerenti con il progetto formativo dello studente e se adeguatamente motivati.

Gli immatricolati fino all'A.A. 2020/2021 devono consultare le informazioni che si trovano qui.

Modalità di inserimento a librettorichiedere l’attestato o l'equipollenza al CLA e inviarlo alla Segreteria Studenti - Carriere per l’inserimento dell’esame in carriera, tramite mail: carriere.scienze@ateneo.univr.it

3. Competenze trasversali

Scopri i percorsi formativi promossi dal TALC - Teaching and learning center dell'Ateneo, destinati agli studenti regolarmente iscritti all'anno accademico di erogazione del corso https://talc.univr.it/it/competenze-trasversali

Modalità di inserimento a libretto: non è previsto l'inserimento dell'insegnamento nel piano di studi. Solo in seguito all'ottenimento dell'Open Badge verranno automaticamente convalidati i CFU a libretto. La registrazione dei CFU in carriera non è istantanea, ma ci saranno da attendere dei tempi tecnici.  

4. Periodo di stage/tirocinio

Oltre ai CFU previsti dal piano di studi (verificare attentamente quanto indicato sul Regolamento Didattico): qui informazioni su come attivare lo stage. 

Verificare nel regolamento quali attività possono essere di tipologia D e quali di tipologia F.

Insegnamenti e altre attività che si possono inserire autonomamente a libretto

 
Academic year:
Primo semestre From 10/4/21 To 1/28/22
years Modules TAF Teacher
1° 2° Data Analysis for Biomedical Sciences D Gloria Menegaz (Coordinator)
1° 2° Introduction to Robotics for students of scientific courses. D Paolo Fiorini (Coordinator)
1° 2° Matlab-Simulink programming D Bogdan Mihai Maris (Coordinator)
Secondo semestre From 3/7/22 To 6/10/22
years Modules TAF Teacher
1° 2° Introduction to Robotics for students of scientific courses. D Paolo Fiorini (Coordinator)
1° 2° Introduction to 3D printing D Franco Fummi (Coordinator)
1° 2° HW components design on FPGA D Franco Fummi (Coordinator)
1° 2° Rapid prototyping on Arduino D Franco Fummi (Coordinator)
1° 2° Protection of intangible assets (SW and invention)between industrial law and copyright D Roberto Giacobazzi (Coordinator)
List of courses with unassigned period
years Modules TAF Teacher
1° 2° Python programming language D Giulio Mazzi (Coordinator)

Teaching code

4S009023

Credits

6

Language

English en

Scientific Disciplinary Sector (SSD)

INF/01 - INFORMATICS

The teaching is organized as follows:

Teoria

Credits

5

Period

Secondo semestre

Academic staff

Alessandro Farinelli

Laboratorio

Credits

1

Period

Secondo semestre

Academic staff

Alessandro Farinelli

Learning outcomes

This course presents the main issues related to control and planning techniques for mobile robotic platforms. The objective is to provide the students with the ability to design, apply and evaluate algorithms that allow mobile robotic platforms to interact with the surrounding environment by performing complex tasks with a high level of autonomy. At the end of the course the students must demonstrate to understand the fundamental concepts related to localization, trajectory planning, task planning, decision-making under uncertainty and machine learning in the context of mobile robotic platforms. Moreover, the students must demonstrate to be able to work with the main development tools for mobile robotic applications and to be able to define technical specifications for deigning and integrating software modules for mobile robotic platforms. The students must also be able to deal with professional figures to design solutions for the high level control of mobile robotic platforms and to continue the studies independently following the technical evolution in the field of mobile robotics and developing innovative approaches to improve the state of the art.

Program

– Kinematics and dynamics for mobile robots (e.g., non-holonomic constrain, unicycle-like model).
– Navigation for mobile robots: localization and mapping (e.g., Extended Kalman Filter SLAM), trajectory planning (e.g., navigation functions).
– Decision-making under uncertainty (e.g., Markov Decision Process) .
– Reinforcement learning for mobile robotic platforms (e.g., model-based and model free approaches, Deep RL).
– Lab: implementation of autonomous behaviors for mobile robotic platforms using state of the art development toolkits (e.g., ROS), simulation environments for empirical evaluation (e.g., Gazebo/Stageros/Vrep), validation on simple mobile platforms (e.g., turtlebot3).

Bibliography

Visualizza la bibliografia con Leganto, strumento che il Sistema Bibliotecario mette a disposizione per recuperare i testi in programma d'esame in modo semplice e innovativo.

Examination Methods

The exam is composed of an oral test and a project that focuses on mobile robot programming.

Students with disabilities or specific learning disorders (SLD), who intend to request the adaptation of the exam, must follow the instructions given HERE